Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
[Objective] The aim was to isolate the triazophos-degrading strain and study its degradation characteristics. [Method] A triazophos-degrading bacterium strain C-Y106 was isolated from sludge in an aeration tank of tri...[Objective] The aim was to isolate the triazophos-degrading strain and study its degradation characteristics. [Method] A triazophos-degrading bacterium strain C-Y106 was isolated from sludge in an aeration tank of triazophos manufacture. Then the strain C-Y106 was identified according to the morphology,physiological and biochemical characteristics,and 16S rRNA sequence analysis. The effect of medium with different nutrients on triazophos-degrading rate by C-Y106 was studied. [Result] The strain C-Y106 was identified as Bacillus subtilis. The strain C-Y106 could grow in the mineral salt medium with 40 mg/L of triazophos as the sole sources of carbon,Nitrogen and Phosphorus. The triazophos-degrading rate was the highest as 76.8% in the mineral salt medium with 40 mg/L of triazophos as the sole source of Phosphorus,after being incubated at 31 ℃,pH 8.0 and 150 r/min for 60 h. [Conclusion] The research had provided theoretical basis for the identification and purification of enzymes for triazophos degradation.展开更多
Antibiotics residues have been accumulating in the environment day by day due to overuse of antibiotics.Recalcitrant antibiotic residues,such as tylosin(TYL),can cause serious environmental problems,which makes it imp...Antibiotics residues have been accumulating in the environment day by day due to overuse of antibiotics.Recalcitrant antibiotic residues,such as tylosin(TYL),can cause serious environmental problems,which makes it important to eliminate TYL from the environment.It is important to eliminate TYL from the environment.In this study,a strain was isolated and purified from fermentation by-product that came from a TYL production factory.The TYL degrading strain was identified by its morphology,physiological and biochemical reactions and sequencing the PCR-amplified fragments of its 16 S r DNAcoding genes.The temperature,shaking speed,initial TYL concentration,p H and inoculum sizes were investigated under simulated conditions by using single factor tests.The results showed that TYL2,a high efficient strain was isolated and was identified as Brevibacillus borstelensis.The degradation rate of TYL by this strain could reach to 75%with an initial concentration of 25 mg L^-1 within 7 days under conditions of 7%B.borstelensis(v/v,2×108 CFU m L^-1)at p H 7.0 and at 35°C.It is interesting that this strain has a very strong ability to degrade the TYL in natural sewage with the degradation rate of 65%within 7 days.This result could be helpful for the degradation of TYL and provide guidance for the degradation of other antibiotics.展开更多
In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock j...In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.展开更多
A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of i...A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.展开更多
The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Micr...The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.展开更多
PDLLA/CHI/β-TCP/NGF composite films were prepared by a solvent evaporation method. The degradation characteristics of the poly (d, l-lactide) composite films were studied in vitro and in vivo. The acidity produced ...PDLLA/CHI/β-TCP/NGF composite films were prepared by a solvent evaporation method. The degradation characteristics of the poly (d, l-lactide) composite films were studied in vitro and in vivo. The acidity produced by poly (d, l-lactide) materials was not obvious. Adding chitosan and β-TCP can relieve the acidity problem and improve strength performance of films. The NGF has influences on the degradation characteristics of films. It is verified that PDLLA/CHI/β-TCP/NGF composite films prepared by solvent evaporation method have excellent degradation characteristics. It can be used as a perfect biomaterial for repairing nerve injuries.展开更多
[Objective] The research aimed to screen out an efficient aniline-degrading strain and study its degradation characteristics. [Method] By domesticated enrichment culture, an efficient aniline-degrading strain named as...[Objective] The research aimed to screen out an efficient aniline-degrading strain and study its degradation characteristics. [Method] By domesticated enrichment culture, an efficient aniline-degrading strain named as DA-K was isolated from activated sludge sample collected from a chemical plant in Henan. DA-K could use aniline as the sole carbon and nitrogen sources. The strain was carried out physiological and biochemi- cal identification, and its biological degradation characteristics were studied. [ Result] DA-K strain was G - and red-shaped, and its colony color was off-white. It was initially determined as Acinetobacter sp. By measuring, the optimum growth temperature and pH for DA-K were respectively 30 ~C and 6.0. DA-K strain could grow well in inorganic salt medium with aniline of 2 500 mg/L. After shaking for 96 h under the conditions of pH 6.0, 30 ℃, 180 r/min and 1 000 mg/L of aniline, the degradation rate of the aniline by DA-K could reach nearly 80%. [ Conclusion] The DA-K strain had a higher aniline degradation efficiency and actual treatment capability of the aniline wastewater, which laid foundation for establishing gene engineerincl strain.展开更多
Obudu Cattle Ranch covers an area of 2400 hactares at an altitude of 900 - 1500 m above mean sea level and is suitable for cultivation of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), Irish potato (Solanu...Obudu Cattle Ranch covers an area of 2400 hactares at an altitude of 900 - 1500 m above mean sea level and is suitable for cultivation of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), Irish potato (Solanum tuberosum), spinach (Spinacia oleracea) cabbage (Brassica oleracea), lettuce (Lactuca sativa) because of its semitemperate climate. Physicochemical characteristics, degradation rates and vulnerability potential of the soils were studied. Eighteen composite soil samples (0 - 15 and 15 - 30 cm) were collected at interval of 500 m along North-South and East-West transects in nine locations. The soils were characterized as follows: texture of sandy loam for the surface and subsurface soils;pH(H2O) (4.7 - 5.7), organic carbon (4.9 - 74.8 gkg-1), total nitrogen (0.2 - 4.8 gkg-1), carbon-nitrogen ratio (14 - 25), available P (6.66 - 107.89 mgkg-1), effective cation exchange capacity (ECEC) (5.58 - 14.62 cmol·kg-1) and base saturation (49.37% - 85.28%);the surface soils were generally higher in organic carbon, total nitrogen, available P and ECEC than the subsurface. The Soil Degradation Rate (SDR)/ Vulnerability Potential (Vp) weighted values of texture (3/3), soil pH(H2O) (4/2), organic carbon (1/5) and base saturation (2/4) showed moderate to low susceptibility of the soils to degradation or vulnerability. The soils could be managed by liming, practicing crop rotation and using soil conservative measures.展开更多
[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated ...[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.展开更多
The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin wer...The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.展开更多
The in vitro degradation characteristic of the poly D, L-lactic acid ( PDLIA )/ hydroxyapatite ( HA ) compound were investigated. The compoundfibers were immersed in static phosphate buffer at 37℃ to degrade fo...The in vitro degradation characteristic of the poly D, L-lactic acid ( PDLIA )/ hydroxyapatite ( HA ) compound were investigated. The compoundfibers were immersed in static phosphate buffer at 37℃ to degrade for 22 weeks. The changes in pH value of the buffer solution, the mechanical strength and morphological of inside and outside of composite fibers with degrurlation characteristic were observed. Results show that pH value of the buffer solution stabilized to aboat 7.0 before 12 weeks, however after 20 weeks that pH value quick declined. After 7 weeks that composite fibers of mechanical strength cannot mensuration. SEM observation revealed ttua bimodal degradation occurred in composite fibers.展开更多
The development of unconventional petroleum resources has gradually become an important succession for increasing oil production.However,the related engineers and researchers are paying more and more attention to the ...The development of unconventional petroleum resources has gradually become an important succession for increasing oil production.However,the related engineers and researchers are paying more and more attention to the application of temporary plugging agents(TPAs)for their efficient development.TPAs can expand the stimulated reservoir volume(SRV)and facilitate the flow of oil and gas to the bottom of the well.Particle-gels used as temporary plugging agents have the characteristics of the simple injection process,good deformation,high plugging strength,and complete self-degradation performance,which have been widely applied in recent years.In this paper,five samples of DPPG polymerized by different molecular weights of cross-linking agents were prepared.In addition,infrared spectroscopy analysis,differential calorimetry scanning(DSC)analysis,static particle gel swelling and degradation performance evaluation experiments,and dynamic temporary plugging performance experiments in cores were conducted at 34°C.Results show that as the molecular weight of the cross-linking agent(at 0.01 g)in the DPPG molecule decreased from 1,000 to 200 Da,the fewer cross-linking sites of DPPG,the looser the microscopic three-dimensional mesh structure formed.The swelling ratio increased from 7 to 33 times.However,the complete degradation time increased from 40 to 210 min.Moreover,the DSC results confirmed that the higher the molecular weight of the cross-linking agent,the worse is chemical stability and the more prone it to self-degradation.DPPG samples had good temporary plugging performance in reservoir cores.DPPGs prepared by the cross-linking agent with smaller molecular weight has a stronger swelling ratio,higher gel strength,and greater plugging strength in the core permeabilities.Moreover,the degraded DPPG is less damaging to the cores.However,their slower degradation rates take a slightly longer times to reach complete degradation.The results of this paper can provide new ideas and a theoretical basis for the development of particle gel-type temporary plugging agents(TPA)with controllable degradation time in low-temperature reservoirs.It can help to expand the application range of existing DPPG reservoir conditions.展开更多
IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the lo...IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the low mountain meadow steppe in the Saiwundu Village, Hargentai Town, West Ujumqin Banner, Xilin Gol League, Inner Mongolia. The results showed that different ground objects had different reflectances. The spectral reflectance curve of the meadow steppe plant communities had obvious characteristics of peak and valley in the visible spectrum band, and had strong reflection in the near-infrared band. The reflection curve of the bare lands in the visible spectrum band was higher than that of the meadow grassland communities while inthe near-infrared band it was lower than that of the meadow grassland communities. Under different degradation gradients, the spectral reflectivity of the meadow steppe grassland communities increased with the enhancement of the degradation gradients. Under the same degradation gradient, the Stipa grandis communities had a lower visible light reflectivity than the Artemisia frigida communities but had a higher near-infrared reflectivity than the Artemisia frigida communities; different ground objects on the meadow steppe had different spectrum characteristic, and showed a certain discrepancies with the changes of the degradation level.展开更多
The current research of nuclear control rod drive mechanism(CRDM)movable latch only makes a simple measurement of wear mass.The wear volume and difference in various claw surfaces are ignored and the degradation mecha...The current research of nuclear control rod drive mechanism(CRDM)movable latch only makes a simple measurement of wear mass.The wear volume and difference in various claw surfaces are ignored and the degradation mechanism of each claw surface is not clear.In this paper,a detailed degradation analysis was carried out on each claw surface of movable latch combined with wear result and worn morphology.Results indicate that the boundary of carbide is preferred for corrosion because carbide presents a nobler Volta potential compared to the metal matrix or boundary region.Due to the oscillation of drive shaft between the claw surfaces of movable latch,the dominant wear mechanism on the upper surface of claw(USC)and lower surface of claw(LSC)is plastic deformation caused by impact wear.Mechanical impact wear will cause the fragmentation of carbides because of the high hardness and low ductility of carbides.Corrosion promotes the broken carbides to fall off from the metal matrix.The generated fine carbides(abrasive particles)cause extra abrasive wear on USC when the movable brings the drive shaft upward or downward.As a result,USC has a higher wear volume than LSC.This research proposes a method to evaluate the wear on the whole movable latches using a 3D full-size scanner.展开更多
Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high ...Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens.展开更多
A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were co...A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were confirmed by bacterial growth and high-performance liquid chromatography(HPLC) analyses. Strain HMG1 was capable of removing 98.8% of the MG in cultures within 12 h and was able to grow vigorously at 20 mg/L MG. A peroxidase gene detected in the genome of strain HMG1 was found to be involved in the MG biodegradation process. The corresponding recombinant peroxidase(r POD) demonstrated high degradative activity at 1 000 mg/L MG. Based on the common candidate intermediates, strain HMG1 was inferred to have one primary MG degradation pathway containing r POD. In addition, five other candidate intermediates of the r POD-MG degradative process were detected. The optimal conditions for MG degradation were determined and showed that strain HMG1 and the r POD enzyme could maintain high bioactivity at a low temperature(20℃), variable p H values(6.0–9.0), higher salinities(100 mmol/L) and other factors, such as multiple metal ions, H2O2 and EDTA.MG-tolerant strain Tenacibaculum sp. HMG1 and its peroxidase have prospective applications as environmental amendments for MG degradation during coastal remediation.展开更多
The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on...The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on discharge capacity and discharge voltage plateau of LaNi5 alloy electrode at 233 K, and the highest discharge capacity and discharge voltage plateau were both obtained at 6 mol/L KOH. When the KOH electrolyte concentration changed from 5 to 9 mol/L at 233 K, the high rate discharge ability (HRD) had the same change tendency as the diffusion coefficient, but the exchange current density did not change significantly, which implied that hydrogen diffusion was the control step at low temperature 233 K for discharge process of LaNi5 alloy electrode.展开更多
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
文摘[Objective] The aim was to isolate the triazophos-degrading strain and study its degradation characteristics. [Method] A triazophos-degrading bacterium strain C-Y106 was isolated from sludge in an aeration tank of triazophos manufacture. Then the strain C-Y106 was identified according to the morphology,physiological and biochemical characteristics,and 16S rRNA sequence analysis. The effect of medium with different nutrients on triazophos-degrading rate by C-Y106 was studied. [Result] The strain C-Y106 was identified as Bacillus subtilis. The strain C-Y106 could grow in the mineral salt medium with 40 mg/L of triazophos as the sole sources of carbon,Nitrogen and Phosphorus. The triazophos-degrading rate was the highest as 76.8% in the mineral salt medium with 40 mg/L of triazophos as the sole source of Phosphorus,after being incubated at 31 ℃,pH 8.0 and 150 r/min for 60 h. [Conclusion] The research had provided theoretical basis for the identification and purification of enzymes for triazophos degradation.
基金jointly supported by the National Key R&D Program of China(2018YFD0500206)the National Natural Science Foundation of China(31772395)the Fundamental Research Funds for Central Non-profit Scientific Institution,Chinese Academy of Agricultural Sciences(1610132019046)。
文摘Antibiotics residues have been accumulating in the environment day by day due to overuse of antibiotics.Recalcitrant antibiotic residues,such as tylosin(TYL),can cause serious environmental problems,which makes it important to eliminate TYL from the environment.It is important to eliminate TYL from the environment.In this study,a strain was isolated and purified from fermentation by-product that came from a TYL production factory.The TYL degrading strain was identified by its morphology,physiological and biochemical reactions and sequencing the PCR-amplified fragments of its 16 S r DNAcoding genes.The temperature,shaking speed,initial TYL concentration,p H and inoculum sizes were investigated under simulated conditions by using single factor tests.The results showed that TYL2,a high efficient strain was isolated and was identified as Brevibacillus borstelensis.The degradation rate of TYL by this strain could reach to 75%with an initial concentration of 25 mg L^-1 within 7 days under conditions of 7%B.borstelensis(v/v,2×108 CFU m L^-1)at p H 7.0 and at 35°C.It is interesting that this strain has a very strong ability to degrade the TYL in natural sewage with the degradation rate of 65%within 7 days.This result could be helpful for the degradation of TYL and provide guidance for the degradation of other antibiotics.
基金Project(51274249)supported by the National Natural Science Foundation of ChinaProject(2015zzts076)supported by the Explore Research Fund for Graduate Students of ChinaProject(201406)supported by the Hunan Key Laboratory of Coal Resources and Safe Mining Open-end Funds,China
文摘In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.
基金supported by the Scientific Research Fund of Liaoning Provincial Education Department (L2014148)
文摘A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.
文摘The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.
文摘PDLLA/CHI/β-TCP/NGF composite films were prepared by a solvent evaporation method. The degradation characteristics of the poly (d, l-lactide) composite films were studied in vitro and in vivo. The acidity produced by poly (d, l-lactide) materials was not obvious. Adding chitosan and β-TCP can relieve the acidity problem and improve strength performance of films. The NGF has influences on the degradation characteristics of films. It is verified that PDLLA/CHI/β-TCP/NGF composite films prepared by solvent evaporation method have excellent degradation characteristics. It can be used as a perfect biomaterial for repairing nerve injuries.
基金Supported by National Transgene Special Project, China(2008ZX2008005-001)Major Public Project in Henan Province,China (091100910500)
文摘[Objective] The research aimed to screen out an efficient aniline-degrading strain and study its degradation characteristics. [Method] By domesticated enrichment culture, an efficient aniline-degrading strain named as DA-K was isolated from activated sludge sample collected from a chemical plant in Henan. DA-K could use aniline as the sole carbon and nitrogen sources. The strain was carried out physiological and biochemi- cal identification, and its biological degradation characteristics were studied. [ Result] DA-K strain was G - and red-shaped, and its colony color was off-white. It was initially determined as Acinetobacter sp. By measuring, the optimum growth temperature and pH for DA-K were respectively 30 ~C and 6.0. DA-K strain could grow well in inorganic salt medium with aniline of 2 500 mg/L. After shaking for 96 h under the conditions of pH 6.0, 30 ℃, 180 r/min and 1 000 mg/L of aniline, the degradation rate of the aniline by DA-K could reach nearly 80%. [ Conclusion] The DA-K strain had a higher aniline degradation efficiency and actual treatment capability of the aniline wastewater, which laid foundation for establishing gene engineerincl strain.
文摘Obudu Cattle Ranch covers an area of 2400 hactares at an altitude of 900 - 1500 m above mean sea level and is suitable for cultivation of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), Irish potato (Solanum tuberosum), spinach (Spinacia oleracea) cabbage (Brassica oleracea), lettuce (Lactuca sativa) because of its semitemperate climate. Physicochemical characteristics, degradation rates and vulnerability potential of the soils were studied. Eighteen composite soil samples (0 - 15 and 15 - 30 cm) were collected at interval of 500 m along North-South and East-West transects in nine locations. The soils were characterized as follows: texture of sandy loam for the surface and subsurface soils;pH(H2O) (4.7 - 5.7), organic carbon (4.9 - 74.8 gkg-1), total nitrogen (0.2 - 4.8 gkg-1), carbon-nitrogen ratio (14 - 25), available P (6.66 - 107.89 mgkg-1), effective cation exchange capacity (ECEC) (5.58 - 14.62 cmol·kg-1) and base saturation (49.37% - 85.28%);the surface soils were generally higher in organic carbon, total nitrogen, available P and ECEC than the subsurface. The Soil Degradation Rate (SDR)/ Vulnerability Potential (Vp) weighted values of texture (3/3), soil pH(H2O) (4/2), organic carbon (1/5) and base saturation (2/4) showed moderate to low susceptibility of the soils to degradation or vulnerability. The soils could be managed by liming, practicing crop rotation and using soil conservative measures.
基金Supported by National Natural Science Foundation of China(30700563)the Middleaged Fund in Qinghai University(2009-QN-07)~~
文摘[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.
基金This work was financially supported by the National Natural Science Foundation of China(41972123,41922015)the Natural Science Foundation of Shandong Province(ZR2020QD036).
文摘The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.
文摘The in vitro degradation characteristic of the poly D, L-lactic acid ( PDLIA )/ hydroxyapatite ( HA ) compound were investigated. The compoundfibers were immersed in static phosphate buffer at 37℃ to degrade for 22 weeks. The changes in pH value of the buffer solution, the mechanical strength and morphological of inside and outside of composite fibers with degrurlation characteristic were observed. Results show that pH value of the buffer solution stabilized to aboat 7.0 before 12 weeks, however after 20 weeks that pH value quick declined. After 7 weeks that composite fibers of mechanical strength cannot mensuration. SEM observation revealed ttua bimodal degradation occurred in composite fibers.
基金supported by the Research Foundation of China University of Petroleum-Beijing at Karamay (No. YJ2018B02002 and XQZX20200010)the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2021D01E23 and 2019D01B57)+3 种基金the University Scientific Research Project of Xinjiang Uygur Autonomous Region (No. XJEDU2019Y067)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Project (No. 2019Q025)the Sichuan Province Regional Innovation Cooperation Project (No. 2020YFQ0036)the CNPC Strategic Cooperation Science and Technology Project (ZLZX2020-01-04-04)
文摘The development of unconventional petroleum resources has gradually become an important succession for increasing oil production.However,the related engineers and researchers are paying more and more attention to the application of temporary plugging agents(TPAs)for their efficient development.TPAs can expand the stimulated reservoir volume(SRV)and facilitate the flow of oil and gas to the bottom of the well.Particle-gels used as temporary plugging agents have the characteristics of the simple injection process,good deformation,high plugging strength,and complete self-degradation performance,which have been widely applied in recent years.In this paper,five samples of DPPG polymerized by different molecular weights of cross-linking agents were prepared.In addition,infrared spectroscopy analysis,differential calorimetry scanning(DSC)analysis,static particle gel swelling and degradation performance evaluation experiments,and dynamic temporary plugging performance experiments in cores were conducted at 34°C.Results show that as the molecular weight of the cross-linking agent(at 0.01 g)in the DPPG molecule decreased from 1,000 to 200 Da,the fewer cross-linking sites of DPPG,the looser the microscopic three-dimensional mesh structure formed.The swelling ratio increased from 7 to 33 times.However,the complete degradation time increased from 40 to 210 min.Moreover,the DSC results confirmed that the higher the molecular weight of the cross-linking agent,the worse is chemical stability and the more prone it to self-degradation.DPPG samples had good temporary plugging performance in reservoir cores.DPPGs prepared by the cross-linking agent with smaller molecular weight has a stronger swelling ratio,higher gel strength,and greater plugging strength in the core permeabilities.Moreover,the degraded DPPG is less damaging to the cores.However,their slower degradation rates take a slightly longer times to reach complete degradation.The results of this paper can provide new ideas and a theoretical basis for the development of particle gel-type temporary plugging agents(TPA)with controllable degradation time in low-temperature reservoirs.It can help to expand the application range of existing DPPG reservoir conditions.
基金Supported by Inner Mongolia Meteorological Brueau Technology ResearchProject(200618)~~
文摘IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the low mountain meadow steppe in the Saiwundu Village, Hargentai Town, West Ujumqin Banner, Xilin Gol League, Inner Mongolia. The results showed that different ground objects had different reflectances. The spectral reflectance curve of the meadow steppe plant communities had obvious characteristics of peak and valley in the visible spectrum band, and had strong reflection in the near-infrared band. The reflection curve of the bare lands in the visible spectrum band was higher than that of the meadow grassland communities while inthe near-infrared band it was lower than that of the meadow grassland communities. Under different degradation gradients, the spectral reflectivity of the meadow steppe grassland communities increased with the enhancement of the degradation gradients. Under the same degradation gradient, the Stipa grandis communities had a lower visible light reflectivity than the Artemisia frigida communities but had a higher near-infrared reflectivity than the Artemisia frigida communities; different ground objects on the meadow steppe had different spectrum characteristic, and showed a certain discrepancies with the changes of the degradation level.
基金Supported by Sichuan Science and Technology Program(Grant No.2019ZDZX0001)National Natural Science Foundation of China(Grant No.U2067221)Sichuan Science and Technology Planning Project(Grant No.22JCQN0111).
文摘The current research of nuclear control rod drive mechanism(CRDM)movable latch only makes a simple measurement of wear mass.The wear volume and difference in various claw surfaces are ignored and the degradation mechanism of each claw surface is not clear.In this paper,a detailed degradation analysis was carried out on each claw surface of movable latch combined with wear result and worn morphology.Results indicate that the boundary of carbide is preferred for corrosion because carbide presents a nobler Volta potential compared to the metal matrix or boundary region.Due to the oscillation of drive shaft between the claw surfaces of movable latch,the dominant wear mechanism on the upper surface of claw(USC)and lower surface of claw(LSC)is plastic deformation caused by impact wear.Mechanical impact wear will cause the fragmentation of carbides because of the high hardness and low ductility of carbides.Corrosion promotes the broken carbides to fall off from the metal matrix.The generated fine carbides(abrasive particles)cause extra abrasive wear on USC when the movable brings the drive shaft upward or downward.As a result,USC has a higher wear volume than LSC.This research proposes a method to evaluate the wear on the whole movable latches using a 3D full-size scanner.
文摘Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens.
基金The Scientific Research Project of Xiamen Southern Oceanographic Center under contract No.17GZP007NF03the China Ocean Mineral Resources R&D Association under contract No.DY-125-22-QY-18
文摘A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were confirmed by bacterial growth and high-performance liquid chromatography(HPLC) analyses. Strain HMG1 was capable of removing 98.8% of the MG in cultures within 12 h and was able to grow vigorously at 20 mg/L MG. A peroxidase gene detected in the genome of strain HMG1 was found to be involved in the MG biodegradation process. The corresponding recombinant peroxidase(r POD) demonstrated high degradative activity at 1 000 mg/L MG. Based on the common candidate intermediates, strain HMG1 was inferred to have one primary MG degradation pathway containing r POD. In addition, five other candidate intermediates of the r POD-MG degradative process were detected. The optimal conditions for MG degradation were determined and showed that strain HMG1 and the r POD enzyme could maintain high bioactivity at a low temperature(20℃), variable p H values(6.0–9.0), higher salinities(100 mmol/L) and other factors, such as multiple metal ions, H2O2 and EDTA.MG-tolerant strain Tenacibaculum sp. HMG1 and its peroxidase have prospective applications as environmental amendments for MG degradation during coastal remediation.
基金the National Natural Science Foundation of China (NSFC 50571072)
文摘The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on discharge capacity and discharge voltage plateau of LaNi5 alloy electrode at 233 K, and the highest discharge capacity and discharge voltage plateau were both obtained at 6 mol/L KOH. When the KOH electrolyte concentration changed from 5 to 9 mol/L at 233 K, the high rate discharge ability (HRD) had the same change tendency as the diffusion coefficient, but the exchange current density did not change significantly, which implied that hydrogen diffusion was the control step at low temperature 233 K for discharge process of LaNi5 alloy electrode.