ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
ZnS thin films were prepared by sulfuring zinc thin films at different sulfuration temperatures. The crystal structure,surface morphology, defects, and optical properties of the thin films were characterized by x-ray ...ZnS thin films were prepared by sulfuring zinc thin films at different sulfuration temperatures. The crystal structure,surface morphology, defects, and optical properties of the thin films were characterized by x-ray diffraction(XRD), scanning electron microscopy(SEM), positron annihilation Doppler broadening, and UV-Vis spectrophotometer, respectively.It was found that the(200)-plane preferred orientation of the ZnS thin films changed to(111)-plane with increasing sulfidation temperature. Moreover, a number of large holes were generated at 420?C and eliminated at 440?C. The concentration of defects was lowest when the sulfuration temperature was 440?C. The optical transmission of all samples was maintained at 60%–80% in the wavelength range of 400 nm–800 nm, and the band energy of the ZnS thin films was approximately3.5 e V for all treatment temperatures except 430?C.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-...A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-temperature photoluminescence spectra of fine-grained obliquely deposited films. Doping film with In impurity leads to quenching of the doublet band, while further thermal treatment causes activation of the intrinsic band, the half-width and the blue shift of the red edge of which correlates with the maximum value of anomalously high photovoltage generated by the film.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in...Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.展开更多
ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects...ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects of Y2O3 doping concentration and sintering temperature on the potential gradient of the samples were systematically investigated. The results show that the sample with the best electrical properties can be obtained by doping 0.08 mol% Y2O3 and sintering at 725℃. Under these optimum preparation conditions, the leakage current and the nonlinear coefficient are found to be 36.4 gA and 13.1. The sample with the best electrical properties has a grain size of 1.290um, a single grain boundary voltage of 4.08 V, a barrier height of 0.81 eV, and a depletion layer width of 10.2 nm, which are determined by thermionic emission. Small grain size with good grain boundary characteristics is beneficial to improve the electrical properties of varistors and promote the potential gradient.展开更多
Cerium oxide film formed on the nickel electrode at 453 K in LiNO3-KNO3 molten salts. The molten salt background and the cathode process of Leeds on the nickel electrode were studied by using cyclic voltammetry. The c...Cerium oxide film formed on the nickel electrode at 453 K in LiNO3-KNO3 molten salts. The molten salt background and the cathode process of Leeds on the nickel electrode were studied by using cyclic voltammetry. The cathodic reaction mechanism of the molten salt background was: O-2(-)+e <----> O-2(-2); O-2+2NO(3)(-) --> 2NO(2)(-)+2O(2). According to the results of SEM and XPS, cerium oxide film, which is composed of CeO2, can form on the nickel electrode at - 1.850 V vs. Ag/AgNO3 (0.1 mol/L) reference electrode.展开更多
Photo-Chemical Vapor Deposition (Photo-CVD) is a promising technique of lowtemperature semiconductor. SiO<sub>2</sub> films made by this technique are used for diffusion mask, VLSI multilayer interconnec...Photo-Chemical Vapor Deposition (Photo-CVD) is a promising technique of lowtemperature semiconductor. SiO<sub>2</sub> films made by this technique are used for diffusion mask, VLSI multilayer interconnection, active device isolation, dielectric grid of MOS device and passivation of semiconductor devices. Dielectric films were manufactured by展开更多
In order to improve the properties of potato starch film,cinnamon essential oil(CEO)encapsulated with mesoporous nano-silica(SBA-15)was added to the film and the potato starch dispersion was modified by lowtemperature...In order to improve the properties of potato starch film,cinnamon essential oil(CEO)encapsulated with mesoporous nano-silica(SBA-15)was added to the film and the potato starch dispersion was modified by lowtemperature plasma(LTP).The effects of SBA-15-CEO on the physical,mechanical,antioxidant and antifungal properties of the film were investigated.Results revealed that the addition of SBA-15-CEO significantly improved the film properties.The water vapor transmission rate(WVTR)decreased from 14.01g/(m^(2)·h)to 12.75g/(m^(2)·h)with increasing concentrations of SBA-15-CEO.When 0.4 g/100 mL SBA-15-CEO was added,the oxygen transmittance rate(OTR)decreased from 8.113×10^(-15)cm^(2)s^(-1)Pa^(-1)to 3.017×10^(-15)cm^(2)s^(-1)Pa^(-1).The tensile strength(TS)and elongation at break(EB)reached maximum values when the dosage of SBA-15-CEO was 0.4 g/100 mL.The zeta potential(ZP)of the colloid solutions initially decreased and subsequently increased,corresponding to a minimum colloid solution ZP(0.947 mV)at 0.4 g/100 mL SBA-15-CEO,and a maximum(2.55 mV)at 0.8 g/100 mL SBA-15-CEO.Furthermore,the films with SBA-15-CEO exhibited antifungal and antioxidant activity.Moreover,the aggregation of SBA-15-CEO decreased with the addition of 0.4 g/100 mL,and the appearance of irregular and rough fractured surfaces were also alleviated.Fourier transform infrared(FTIR)spectroscopy revealed SBA-15-CEO to increase the hydrogen bonding of the film.This work proved the potential of LTP-PS/SBA-15-CEO(i.e.,potato starch/SBA-15-CEO film modified by LTP)as an antioxidant and antifungal packaging material.展开更多
Chalcopyrite Cu(In,Ga)Se_(2)(CIGS) thin films deposited in a low-temperature process(450℃) usually produce fine grains and poor crystallinity. Herein, different Ag treatment processes, which can decrease the melting ...Chalcopyrite Cu(In,Ga)Se_(2)(CIGS) thin films deposited in a low-temperature process(450℃) usually produce fine grains and poor crystallinity. Herein, different Ag treatment processes, which can decrease the melting temperature and enlarge band gap of the CIGS films, were employed to enhance the quality of thin films in a low-temperature deposition process. It is demonstrated that both the Ag precursor and Ag surface treatment process can heighten the crystallinity of CIGS films and the device efficiency. The former is more obvious than the latter. Furthermore, the Urbach energy is also reduced with Ag doping. This work aims to provide a feasible Ag-doping process for the high-quality CIGS films in a low-temperature process.展开更多
A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently.A low in put voltage is essential to en sure the heaters saf...A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently.A low in put voltage is essential to en sure the heaters safe applications.However,the low voltage gen erally leads to low saturated temperature and heati ng rate and hence a low thermal efficie ncy.How to reduce the in put voltage while maintai ning a high electro-thermal efficiency is still a challenge.Herein,a highly electrical and thermal conductive film was 8nstructed using a graphene-based composite which has an internal three-dimensional(3D)conductive network.In the 3D framework,cellulose nanocrystalline(CNC)phase with chiral liquid crystal manner presents in the form of alig ned helix betwee n the graphe ne oxide(GO)layers.Carbon nano dots(CDs)are assembled泊side the composite as con ductive nano fillers.Subseque nt an neali ng and compressi on results in the formati on of the assembled GO-CNC-CDs film.The carb on ized CNC nano rods(CNR)with the helical alignment act as irrplane and through-pla ne conn ecti ons of n eighbori ng reduced GO(rGO)nano sheets,forming a con ductive network in the composite film.The CDs with ultrafast electr ons tran sfer rates provide additi onal electro ns and phonons tran sport paths for the composite.As a result,the obtai ned graphe ne?based composite film(rGO-CNR-CDs)exhibited a high thermal conductivity of 1,978.6 W m^-1·K^-1 and electrical conductivity of 2,053.4 S·cm^-1,respectively.The composite film showed an outstanding electro-thermal heating efficiency with the saturated temperature of 315℃and maximum heating rate of 44.9℃·s^-1 at a very low in put voltage of 10 V.The freestandi ng graphe ne composite film with the delicate nano structure desig n has a great pote ntial to be integrated into electro-thermal devices.展开更多
In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. ...In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. Flexible PSCs are thought to be one of the most priority options for mass production, related to the intrinsic advantage of perovskite thin films which could be deposited by facile solution processes at low temperature. Flexible PSCs have at least four advantages in comparison to the rigid counterpart:(1) it can generate higher power output at lighter weight,(2) it is easily portable,(3) it can be easily attached to architectures or textiles with diverse shapes, and(4) it is compatible with roll-to-roll fabrication in a large scale. In this review, we have summarized recent development of the key materials and technologies applied in flexible PSCs. The key materials including flexible substrates, transparent and conductive electrodes, and interfacial materials; some key technologies about roll-to-roll manufacture, encapsulation technology have been overviewed. Finally, a prospect on possible application directions of flexible PSCs has been discussed.展开更多
The BiOCI thin film with flower-like sphere structure was prepared at a low temperature by the alcoholysis-coating method using BiC13 as precursor. The obtained thin film was characterized by X-ray diffraction (XRD)...The BiOCI thin film with flower-like sphere structure was prepared at a low temperature by the alcoholysis-coating method using BiC13 as precursor. The obtained thin film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electronic energy spectrum (EDS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). And the re- suits showed that the obtained BiOC1 film without calcination was composed of flower-like sphere structure with tetragonal phase and had a good absorption for ultraviolet. The photocatalytic activity of BiOC1 thin film was also evaluated by the deg- radation of methyl orange in water under UV light irradiation. The degradation experimental results confirmed that the film prepared at low temperature possessed a high photocatalytic activity and could achieve 97% degradation to 10 mg/L methyl orange solution after 150 min UV light irradiation. The stability of the obtained BLOC1 thin film was also good and its photo- catalytic activity still remained an above 94% removal of methyl orange after being used four times. In addition, a possible formation mechanism of BiOCI thin film was also inferred and the results suggested that the ethylene glycol solvent may con- tribute to the forming flower-like sphere structure.展开更多
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705212 and 11675188)
文摘ZnS thin films were prepared by sulfuring zinc thin films at different sulfuration temperatures. The crystal structure,surface morphology, defects, and optical properties of the thin films were characterized by x-ray diffraction(XRD), scanning electron microscopy(SEM), positron annihilation Doppler broadening, and UV-Vis spectrophotometer, respectively.It was found that the(200)-plane preferred orientation of the ZnS thin films changed to(111)-plane with increasing sulfidation temperature. Moreover, a number of large holes were generated at 420?C and eliminated at 440?C. The concentration of defects was lowest when the sulfuration temperature was 440?C. The optical transmission of all samples was maintained at 60%–80% in the wavelength range of 400 nm–800 nm, and the band energy of the ZnS thin films was approximately3.5 e V for all treatment temperatures except 430?C.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
文摘A dominant intrinsic luminescence band, which is due to the surface potential barriers of crystalline grains, and an edge doublet, which arises as an LO-phonon repetition of the e-h band, has been revealed in the low-temperature photoluminescence spectra of fine-grained obliquely deposited films. Doping film with In impurity leads to quenching of the doublet band, while further thermal treatment causes activation of the intrinsic band, the half-width and the blue shift of the red edge of which correlates with the maximum value of anomalously high photovoltage generated by the film.
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.
文摘Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.
基金supported by the Nano Special Plan from Shanghai Municipal Science and Technology Plan of Commission (No 0852nm06000)the Shanghai Municipal Natural Science Foundation (No 08ZR1406700)
文摘ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects of Y2O3 doping concentration and sintering temperature on the potential gradient of the samples were systematically investigated. The results show that the sample with the best electrical properties can be obtained by doping 0.08 mol% Y2O3 and sintering at 725℃. Under these optimum preparation conditions, the leakage current and the nonlinear coefficient are found to be 36.4 gA and 13.1. The sample with the best electrical properties has a grain size of 1.290um, a single grain boundary voltage of 4.08 V, a barrier height of 0.81 eV, and a depletion layer width of 10.2 nm, which are determined by thermionic emission. Small grain size with good grain boundary characteristics is beneficial to improve the electrical properties of varistors and promote the potential gradient.
基金[The project was financially supported by the National Science Foundation of China.]
文摘Cerium oxide film formed on the nickel electrode at 453 K in LiNO3-KNO3 molten salts. The molten salt background and the cathode process of Leeds on the nickel electrode were studied by using cyclic voltammetry. The cathodic reaction mechanism of the molten salt background was: O-2(-)+e <----> O-2(-2); O-2+2NO(3)(-) --> 2NO(2)(-)+2O(2). According to the results of SEM and XPS, cerium oxide film, which is composed of CeO2, can form on the nickel electrode at - 1.850 V vs. Ag/AgNO3 (0.1 mol/L) reference electrode.
文摘Photo-Chemical Vapor Deposition (Photo-CVD) is a promising technique of lowtemperature semiconductor. SiO<sub>2</sub> films made by this technique are used for diffusion mask, VLSI multilayer interconnection, active device isolation, dielectric grid of MOS device and passivation of semiconductor devices. Dielectric films were manufactured by
基金supported by the Natural Science Foundation of Shandong Province[ZR2020QC244]the National Natural Science Foundation of China[31972144].
文摘In order to improve the properties of potato starch film,cinnamon essential oil(CEO)encapsulated with mesoporous nano-silica(SBA-15)was added to the film and the potato starch dispersion was modified by lowtemperature plasma(LTP).The effects of SBA-15-CEO on the physical,mechanical,antioxidant and antifungal properties of the film were investigated.Results revealed that the addition of SBA-15-CEO significantly improved the film properties.The water vapor transmission rate(WVTR)decreased from 14.01g/(m^(2)·h)to 12.75g/(m^(2)·h)with increasing concentrations of SBA-15-CEO.When 0.4 g/100 mL SBA-15-CEO was added,the oxygen transmittance rate(OTR)decreased from 8.113×10^(-15)cm^(2)s^(-1)Pa^(-1)to 3.017×10^(-15)cm^(2)s^(-1)Pa^(-1).The tensile strength(TS)and elongation at break(EB)reached maximum values when the dosage of SBA-15-CEO was 0.4 g/100 mL.The zeta potential(ZP)of the colloid solutions initially decreased and subsequently increased,corresponding to a minimum colloid solution ZP(0.947 mV)at 0.4 g/100 mL SBA-15-CEO,and a maximum(2.55 mV)at 0.8 g/100 mL SBA-15-CEO.Furthermore,the films with SBA-15-CEO exhibited antifungal and antioxidant activity.Moreover,the aggregation of SBA-15-CEO decreased with the addition of 0.4 g/100 mL,and the appearance of irregular and rough fractured surfaces were also alleviated.Fourier transform infrared(FTIR)spectroscopy revealed SBA-15-CEO to increase the hydrogen bonding of the film.This work proved the potential of LTP-PS/SBA-15-CEO(i.e.,potato starch/SBA-15-CEO film modified by LTP)as an antioxidant and antifungal packaging material.
基金The work was supported by the National Key R&D Program of China(No.2018YFB1500200)National Natural Science Foundation of China(Nos.61774089 and 61974076)Natural Science Foundation of Tianjin(No.18JCZDJC31200)。
文摘Chalcopyrite Cu(In,Ga)Se_(2)(CIGS) thin films deposited in a low-temperature process(450℃) usually produce fine grains and poor crystallinity. Herein, different Ag treatment processes, which can decrease the melting temperature and enlarge band gap of the CIGS films, were employed to enhance the quality of thin films in a low-temperature deposition process. It is demonstrated that both the Ag precursor and Ag surface treatment process can heighten the crystallinity of CIGS films and the device efficiency. The former is more obvious than the latter. Furthermore, the Urbach energy is also reduced with Ag doping. This work aims to provide a feasible Ag-doping process for the high-quality CIGS films in a low-temperature process.
基金This work was supported by the National Key R&D Program of China(Nos.2016YFA0202900 and 2016YFC1402400)National Natural Science Foundation of China(No.51672173)+2 种基金Shanghai Science and Technology committee(No.17JC1400700 and 18520744700)Science and Technology Planning Project of Guangdong Province(No.2016A010103018)The authors gratefully acknowledge the Shanghai Synchrotron Radiation Facility(SSRF)and Shanghai LEVSON Group Co.,Ltd.for the measurements.
文摘A high-efficiency electro-thermal heater requires simultaneously high electrical and thermal conductivities to generate and dissipate Joule heat efficiently.A low in put voltage is essential to en sure the heaters safe applications.However,the low voltage gen erally leads to low saturated temperature and heati ng rate and hence a low thermal efficie ncy.How to reduce the in put voltage while maintai ning a high electro-thermal efficiency is still a challenge.Herein,a highly electrical and thermal conductive film was 8nstructed using a graphene-based composite which has an internal three-dimensional(3D)conductive network.In the 3D framework,cellulose nanocrystalline(CNC)phase with chiral liquid crystal manner presents in the form of alig ned helix betwee n the graphe ne oxide(GO)layers.Carbon nano dots(CDs)are assembled泊side the composite as con ductive nano fillers.Subseque nt an neali ng and compressi on results in the formati on of the assembled GO-CNC-CDs film.The carb on ized CNC nano rods(CNR)with the helical alignment act as irrplane and through-pla ne conn ecti ons of n eighbori ng reduced GO(rGO)nano sheets,forming a con ductive network in the composite film.The CDs with ultrafast electr ons tran sfer rates provide additi onal electro ns and phonons tran sport paths for the composite.As a result,the obtai ned graphe ne?based composite film(rGO-CNR-CDs)exhibited a high thermal conductivity of 1,978.6 W m^-1·K^-1 and electrical conductivity of 2,053.4 S·cm^-1,respectively.The composite film showed an outstanding electro-thermal heating efficiency with the saturated temperature of 315℃and maximum heating rate of 44.9℃·s^-1 at a very low in put voltage of 10 V.The freestandi ng graphe ne composite film with the delicate nano structure desig n has a great pote ntial to be integrated into electro-thermal devices.
基金financially supported by the National Natural Science Foundation of China(51672094,51661135023)the National Key R&D Program of China(2016YFC0205002)+1 种基金the Selfdetermined and Innovative Research Funds of HUST(2016JCTD111)the open research funds of Engineering Research Center of Nano-Geo Materials of Ministry of Education,China University of Geosciences(NGM2017KF013)
文摘In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. Flexible PSCs are thought to be one of the most priority options for mass production, related to the intrinsic advantage of perovskite thin films which could be deposited by facile solution processes at low temperature. Flexible PSCs have at least four advantages in comparison to the rigid counterpart:(1) it can generate higher power output at lighter weight,(2) it is easily portable,(3) it can be easily attached to architectures or textiles with diverse shapes, and(4) it is compatible with roll-to-roll fabrication in a large scale. In this review, we have summarized recent development of the key materials and technologies applied in flexible PSCs. The key materials including flexible substrates, transparent and conductive electrodes, and interfacial materials; some key technologies about roll-to-roll manufacture, encapsulation technology have been overviewed. Finally, a prospect on possible application directions of flexible PSCs has been discussed.
基金financially supported by the National Natural Science Foundation of China (20876104, 21176168)by the Science and Technology Foundation of Shanxi Province, China (20090311082)
文摘The BiOCI thin film with flower-like sphere structure was prepared at a low temperature by the alcoholysis-coating method using BiC13 as precursor. The obtained thin film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electronic energy spectrum (EDS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). And the re- suits showed that the obtained BiOC1 film without calcination was composed of flower-like sphere structure with tetragonal phase and had a good absorption for ultraviolet. The photocatalytic activity of BiOC1 thin film was also evaluated by the deg- radation of methyl orange in water under UV light irradiation. The degradation experimental results confirmed that the film prepared at low temperature possessed a high photocatalytic activity and could achieve 97% degradation to 10 mg/L methyl orange solution after 150 min UV light irradiation. The stability of the obtained BLOC1 thin film was also good and its photo- catalytic activity still remained an above 94% removal of methyl orange after being used four times. In addition, a possible formation mechanism of BiOCI thin film was also inferred and the results suggested that the ethylene glycol solvent may con- tribute to the forming flower-like sphere structure.