Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en...Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.展开更多
Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is cr...Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit...Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).展开更多
Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its int...Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its intrinsic capacity is rather low(660 mAh g^(-1)),<1/6 of silicon.Herein,we propose a seamless integration strategy by merging the voltage and capacity of phosphorus and antimony into a solid solution alloy.Interestingly,the enlistment of P is found greatly enlarge the capacity from 660 to 993 mAh g^(-1) for such Sb_(30)P_(30) solid solution,while maintaining a single and stable discharge plateau(~0.79 V)similar to elemental Sb.Various experimental characterizations including XPS,PDF,Raman,and EDS mapping reveal that in such a material the P and Sb atoms have interacted with each other to form a homogenous solid solution alloy,rather than a simple mixing of the two substances.Thus,the Sb_(30)P_(30) exhibits superior rate performances(807 mAh g^(-1) at 5000 mA g^(-1))and cyclability(821 mAh g^(-1) remained after 300 cycles).Furthermore,such Sb_(60-x)P_(x) alloys can even deliver 621 mAh g^(-1) at30℃,which can be served as the alternative anode materials for high-energy and low-temperature batteries.This unique seamless integration strategy based on solid solution chemistry can be easily leveraged to manipulate the capacity of other electrode materials at similar voltage.展开更多
Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that th...Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that the discharge capacities of the samples depend on the nickel contents,which increases firstly and then decreases with increasing Ni contents.Optimized Ni_(0.5)Cr_(7.5)O_(21)delivers a first capacity up to 392.6 m Ah·g^(-1)at 0.1C.In addition,Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr_(8)O_(21).At 1 C,an initial discharge capacity of 348.7 m Ah·g^(-1)was achieved for Ni_(0.5)Cr_(7.5)O_(21),much higher than 271.4 m Ah·g^(-1)of the un-doped sample,with an increase of more than 28%.Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance,which is conducive to the electrochemical kinetic behaviors during charge-discharge.展开更多
Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barri...Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barrier to utilizing hydroxides/hydroxyl carbonates is their poor electrochemical performance,resulting from the significantly poor electrical conductivity and sluggish charge storage kinetics.Hence,a multilayered structural approach is primarily and successfully used to construct electrodes as one of the efficient approaches.This method has made it possible to develop well-ordered nanostructured electrodes with good performance by taking advantage of tunable approach parameters.Herein,we report the design of multilayered heterostructure porous zinc-nickel nanosheets@nickel flakes hydroxyl carbonates and/or hydroxides integrated with conductive PEDOT fibrous network(i.e.,ZnNi@Ni@PEDOT) via facile synthesis methods.The combined hybrid electrode acquires the features of high electrical conductivity from one part and various valance states from another one to develop a well-organized nanosheet/flake/fibrous-like heterostructure with decent mechanical strength,creating robust synergistic results.Thus,the designed binder-free ZnNi@Ni@PEDOT electrode delivers a high areal capacity value of 1050.1 μA h cm^(-2) at 3 mA cm^(-2) with good cycling durability,significantly outperforming other individual electrodes.Moreover,its feasibility is also tested by constructing a hybrid electrochemical cell(HEC).The assembled HEC exhibits a high areal capacity value of 783.8 μA h cm^(-2) at5 mA cm^(-2).and even at a high current density of 100 mA cm^(-2)(484.6 μA h cm^(-2)),the device still retains a rate capability of 61,82%,Also,the HEC shows maximum energy and power densities of0.595 mW h cm^(-2) and 77.23 mW cm^(-2),respectively,along with good cycling stability.The obtained energy storage capabilities effectively power various electronic components.These results provide a viable and practical way to construct a positive electrode with innovative heterostructures for highperformance energy storage devices and profoundly influence the development of electrochemical SCs.展开更多
The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ...The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.展开更多
Lithium cobalt oxide(LiCoO_(2))is proverbially employed as cathode materials of lithium-ion batteries attributed to the high theoretical capacity,and currently,it is developing towards higher cut-off voltages in the p...Lithium cobalt oxide(LiCoO_(2))is proverbially employed as cathode materials of lithium-ion batteries attributed to the high theoretical capacity,and currently,it is developing towards higher cut-off voltages in the pursuit of higher energy density.However,it suffers from serious structural degradation and surface side reactions,in particular,at the voltage above 4.60 V,leading to rapid decay of the battery life.Taking into account the desirable oxygen buffering property and the fast ion mobility characteristic of cerium oxide fluoride,in this work,we prepared Ce&F co-modified LiCoO_(2)by using the precursors of Ce(NO_(3))_(3)·6H_(2)O and NH_(4)F,and evaluated the electrochemical performance under voltages exceeding 4.60 V.The results indicated that the modified samples have multiphase heterostructure of surface CeO_(2-x)and unique Ce-O-F solid solution phase.At 3.0–4.60 V and 25℃,the preferred sample LCO-0.5Ce-0.3F has a high initial discharge specific capacity of 221.9 mA h g^(-1)at 0.1 C,with the retention of 80.3%and 89.6%after 300 cycles at 1 and 5 C,comparing with the pristine LCO(56.4%and 22.6%).And at 3.0–4.65 V,its retention is 64.0%after 300 cycles at 1 C,versus 8.5%of the pristine LCO.Through structural characterizations and DFT calculations,it suggests that Ce^(4+)&F^(-)co-doping suppresses the H3 to H1/3 irreversible phase transition,stabilizes the lattice structure,and reduces the redox activity of the lattice oxygen by modulating the Co 3d–O 2p energy band,consequently improving the electrochemical performance of LiCoO_(2)at high voltages.展开更多
The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microsco...The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ...In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.展开更多
Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant curre...Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant current technology. The measurement results indicate that the lattice parameters of nano-scale Ni(OH)2 are changed and the agglomeration of particles becomes obvious with the increased Zn-doped content. Compared with un-doped one, the discharge specific capacities ofnano-scale Ni(OH)2 doped with 10% Zn are enhanced by 8% and 6%, respectively, at the discharge rate of 0.2C and 3C. After 110 cycles, the discharge specific capacity of the sample doped with 10% zinc is still above 85% of its initial capacity discharged at 0.2C. Therefore, a suitable Zn-doped content is beneficial to improving the discharge performance of nano-scale Ni(OH)2.展开更多
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d...Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.展开更多
Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared...Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).展开更多
Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performa...Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performance were investigated. The results show that the samples have a-phase structure with narrow particle size distribution. Cu singly doped nano-Ni(OH)2 contains irregular particles, while Cu/Al co-doped nano-Ni(OH)2 displays a quasi-spherical shape and has a relatively higher tap density. Composite electrodes were prepared by mixing 8% (mass fraction) nanometer samples with commercial micro-size spherical nickel. The charge/discharge test and cyclic voltammetry results indicate that the electrochemical performance of Cu/Al co-doped nano-Ni(OH)2 is better than that of Cu singly doped nano-Ni(OH)2, the former's discharge capacity reaches 330 mA.h/g at 0.2C, 12 mA.h/g and 91 mA.h/g larger than that of Cu singly doped sample and pure spherical nickel electrode, respectively. Moreover, the proton diffusion coefficient of Cu/Al co-doped sample is 52.3% larger than that of Cu singly doped sample.展开更多
As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for catho...As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Technology(YBKT21-06,YKBT23-05).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
基金Supported by National Natural Science Foundation of China (Grant No.52275152)。
文摘Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金supported by the National Natural Science Foundation of China(No.51907193,51822706,and 51777200)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)
文摘Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).
基金the National Natural Science Foundation of China(Grant No.52072138,21571073,51772115)National Key Research and Development Program of China(Grant No.2018YFE0206900)Hubei Provincial Natural Science Foundation of China(Grant No.2019CFA002)。
文摘Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its intrinsic capacity is rather low(660 mAh g^(-1)),<1/6 of silicon.Herein,we propose a seamless integration strategy by merging the voltage and capacity of phosphorus and antimony into a solid solution alloy.Interestingly,the enlistment of P is found greatly enlarge the capacity from 660 to 993 mAh g^(-1) for such Sb_(30)P_(30) solid solution,while maintaining a single and stable discharge plateau(~0.79 V)similar to elemental Sb.Various experimental characterizations including XPS,PDF,Raman,and EDS mapping reveal that in such a material the P and Sb atoms have interacted with each other to form a homogenous solid solution alloy,rather than a simple mixing of the two substances.Thus,the Sb_(30)P_(30) exhibits superior rate performances(807 mAh g^(-1) at 5000 mA g^(-1))and cyclability(821 mAh g^(-1) remained after 300 cycles).Furthermore,such Sb_(60-x)P_(x) alloys can even deliver 621 mAh g^(-1) at30℃,which can be served as the alternative anode materials for high-energy and low-temperature batteries.This unique seamless integration strategy based on solid solution chemistry can be easily leveraged to manipulate the capacity of other electrode materials at similar voltage.
基金National Natural Science Foundation of China(No.51790490)。
文摘Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that the discharge capacities of the samples depend on the nickel contents,which increases firstly and then decreases with increasing Ni contents.Optimized Ni_(0.5)Cr_(7.5)O_(21)delivers a first capacity up to 392.6 m Ah·g^(-1)at 0.1C.In addition,Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr_(8)O_(21).At 1 C,an initial discharge capacity of 348.7 m Ah·g^(-1)was achieved for Ni_(0.5)Cr_(7.5)O_(21),much higher than 271.4 m Ah·g^(-1)of the un-doped sample,with an increase of more than 28%.Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance,which is conducive to the electrochemical kinetic behaviors during charge-discharge.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (2018R1A6A1A03025708)。
文摘Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barrier to utilizing hydroxides/hydroxyl carbonates is their poor electrochemical performance,resulting from the significantly poor electrical conductivity and sluggish charge storage kinetics.Hence,a multilayered structural approach is primarily and successfully used to construct electrodes as one of the efficient approaches.This method has made it possible to develop well-ordered nanostructured electrodes with good performance by taking advantage of tunable approach parameters.Herein,we report the design of multilayered heterostructure porous zinc-nickel nanosheets@nickel flakes hydroxyl carbonates and/or hydroxides integrated with conductive PEDOT fibrous network(i.e.,ZnNi@Ni@PEDOT) via facile synthesis methods.The combined hybrid electrode acquires the features of high electrical conductivity from one part and various valance states from another one to develop a well-organized nanosheet/flake/fibrous-like heterostructure with decent mechanical strength,creating robust synergistic results.Thus,the designed binder-free ZnNi@Ni@PEDOT electrode delivers a high areal capacity value of 1050.1 μA h cm^(-2) at 3 mA cm^(-2) with good cycling durability,significantly outperforming other individual electrodes.Moreover,its feasibility is also tested by constructing a hybrid electrochemical cell(HEC).The assembled HEC exhibits a high areal capacity value of 783.8 μA h cm^(-2) at5 mA cm^(-2).and even at a high current density of 100 mA cm^(-2)(484.6 μA h cm^(-2)),the device still retains a rate capability of 61,82%,Also,the HEC shows maximum energy and power densities of0.595 mW h cm^(-2) and 77.23 mW cm^(-2),respectively,along with good cycling stability.The obtained energy storage capabilities effectively power various electronic components.These results provide a viable and practical way to construct a positive electrode with innovative heterostructures for highperformance energy storage devices and profoundly influence the development of electrochemical SCs.
基金supported by the National Natural Science Foundation of China(No.22075262)。
文摘The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.
基金partially supported by the Major Program of the National Natural Science Foundation of China(No.22090034)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lithium cobalt oxide(LiCoO_(2))is proverbially employed as cathode materials of lithium-ion batteries attributed to the high theoretical capacity,and currently,it is developing towards higher cut-off voltages in the pursuit of higher energy density.However,it suffers from serious structural degradation and surface side reactions,in particular,at the voltage above 4.60 V,leading to rapid decay of the battery life.Taking into account the desirable oxygen buffering property and the fast ion mobility characteristic of cerium oxide fluoride,in this work,we prepared Ce&F co-modified LiCoO_(2)by using the precursors of Ce(NO_(3))_(3)·6H_(2)O and NH_(4)F,and evaluated the electrochemical performance under voltages exceeding 4.60 V.The results indicated that the modified samples have multiphase heterostructure of surface CeO_(2-x)and unique Ce-O-F solid solution phase.At 3.0–4.60 V and 25℃,the preferred sample LCO-0.5Ce-0.3F has a high initial discharge specific capacity of 221.9 mA h g^(-1)at 0.1 C,with the retention of 80.3%and 89.6%after 300 cycles at 1 and 5 C,comparing with the pristine LCO(56.4%and 22.6%).And at 3.0–4.65 V,its retention is 64.0%after 300 cycles at 1 C,versus 8.5%of the pristine LCO.Through structural characterizations and DFT calculations,it suggests that Ce^(4+)&F^(-)co-doping suppresses the H3 to H1/3 irreversible phase transition,stabilizes the lattice structure,and reduces the redox activity of the lattice oxygen by modulating the Co 3d–O 2p energy band,consequently improving the electrochemical performance of LiCoO_(2)at high voltages.
基金Project(094200510019) supported by Technology Creative Programmer of Henan for Excellent Talents,ChinaProject(092300410132) supported by the Natural Science Foundation of Henan Province,China
文摘The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金Projects(51161015,51371094) supported by the National Natural Science Foundation of China
文摘In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
基金Project(BK2008591) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2009RFQXG065) supported by Harbin Special Foundation of Technological Innovation Talent,China
文摘Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant current technology. The measurement results indicate that the lattice parameters of nano-scale Ni(OH)2 are changed and the agglomeration of particles becomes obvious with the increased Zn-doped content. Compared with un-doped one, the discharge specific capacities ofnano-scale Ni(OH)2 doped with 10% Zn are enhanced by 8% and 6%, respectively, at the discharge rate of 0.2C and 3C. After 110 cycles, the discharge specific capacity of the sample doped with 10% zinc is still above 85% of its initial capacity discharged at 0.2C. Therefore, a suitable Zn-doped content is beneficial to improving the discharge performance of nano-scale Ni(OH)2.
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaProject(CXLX11_0359)supported by Research Innovative Projects for Average College Graduate Students of 2011 in Jiangsu Province,China+2 种基金Project(RERU2011010)supported by Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject(51201089)supported by the National Natural Science Foundation of ChinaProject(CPSF2012M521064)supported by China Postdoctoral Science Foundation
文摘Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.
基金Project (10774030) supported by the National Natural Science Foundation of ChinaProject (2008J1-C161) supported by the Science and Technology Program of Guangzhou City of China
文摘Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).
基金Project (10774030) supported by the National Natural Science Foundation of ChinaProject (S2012010009955) supported by the Guangdong Province Natural Science Foundation of ChinaProject (12C232111916) supported by the Science and Technology Program of Guangzhou City of China
文摘Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performance were investigated. The results show that the samples have a-phase structure with narrow particle size distribution. Cu singly doped nano-Ni(OH)2 contains irregular particles, while Cu/Al co-doped nano-Ni(OH)2 displays a quasi-spherical shape and has a relatively higher tap density. Composite electrodes were prepared by mixing 8% (mass fraction) nanometer samples with commercial micro-size spherical nickel. The charge/discharge test and cyclic voltammetry results indicate that the electrochemical performance of Cu/Al co-doped nano-Ni(OH)2 is better than that of Cu singly doped nano-Ni(OH)2, the former's discharge capacity reaches 330 mA.h/g at 0.2C, 12 mA.h/g and 91 mA.h/g larger than that of Cu singly doped sample and pure spherical nickel electrode, respectively. Moreover, the proton diffusion coefficient of Cu/Al co-doped sample is 52.3% larger than that of Cu singly doped sample.
基金Project(2010ZCO51)supported by Natural Science Foundation of Yunnan ProvinceProject supported by Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245)from Kunming University of Science and Technology
文摘As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.