Cu/ZnO catalysts were prepared by the co-precipitation method with the addition of OP-10 (polyoxyethylene octylphenol ether) and were chemically and structurally characterized by means of XRD, BET, H2-TPR, CO-TPD an...Cu/ZnO catalysts were prepared by the co-precipitation method with the addition of OP-10 (polyoxyethylene octylphenol ether) and were chemically and structurally characterized by means of XRD, BET, H2-TPR, CO-TPD and N20-titration. The effect of OP-10 addition on the activity of Cu/ZnO for the slurry phase methanol synthesis at 150℃ was evaluated. The results showed that Cu/ZnO prepared with addition of 8% OP-10 (denoted as C8) exhibited the promoted activity for the methanol synthesis. The conversion of CO and the STY (space time yield) of methanol were 42.5% and 74.6% higher than those of Cu/ZnO prepared without addition of OP-10 (denoted as CO), respectively. The precursor of C8 contained more aurichalcite and rosasite, and the concerted effect of Cu-Zn in C8 was found to be stronger than that in CO. Compared with CO, C8 showed smaller particle size, lower reduction temperature and larger BET and Cu surface areas.展开更多
Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction interme...Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.展开更多
This review provides a comprehensive overview of the distinguished academic career and scientific accomplishments of Prof.Noritatsu Tsubaki at the University of Toyama.For over 35 years,he has dedicated himself to the...This review provides a comprehensive overview of the distinguished academic career and scientific accomplishments of Prof.Noritatsu Tsubaki at the University of Toyama.For over 35 years,he has dedicated himself to the research field of one-carbon(C1)chemistry,including catalytic conversion of C1 molecules to valuable chemicals and superclean fuels,innovative catalyst and reactor development,and the design of new catalytic reactions and processes.Organized chronologically,this review highlights Prof.Tsubaki’s academic contributions from 1990,when he studied and worked at The University of Tokyo,to his current role as a full professor at the University of Toyama.The academic section of this review is divided into three main parts,focusing on Prof.Tsubaki’s pioneering work in C1 chemistry.We believe that this review will serve as a highly valuable reference for colleagues in the fields of C1 chemistry and catalysis,and inspire the development of more original and groundbreaking research.展开更多
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis o...A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.展开更多
With the support by the National Natural Science Foundation of China,the research team led by Prof.Xiao FengShou(肖丰收)at Zhejiang University developed molecular-fence catalysts for selective oxidation of methane to ...With the support by the National Natural Science Foundation of China,the research team led by Prof.Xiao FengShou(肖丰收)at Zhejiang University developed molecular-fence catalysts for selective oxidation of methane to methanol at low temperature,which was published in Science(2020,367:193—197).展开更多
基金supported by the Chinese Ministry of Science & Technology (2005CCA00700)Spring Scenery Plan (2006) and Program for New Century Excellent Talents in University (NCET-08-0872) from the Chinese Ministry of Education
文摘Cu/ZnO catalysts were prepared by the co-precipitation method with the addition of OP-10 (polyoxyethylene octylphenol ether) and were chemically and structurally characterized by means of XRD, BET, H2-TPR, CO-TPD and N20-titration. The effect of OP-10 addition on the activity of Cu/ZnO for the slurry phase methanol synthesis at 150℃ was evaluated. The results showed that Cu/ZnO prepared with addition of 8% OP-10 (denoted as C8) exhibited the promoted activity for the methanol synthesis. The conversion of CO and the STY (space time yield) of methanol were 42.5% and 74.6% higher than those of Cu/ZnO prepared without addition of OP-10 (denoted as CO), respectively. The precursor of C8 contained more aurichalcite and rosasite, and the concerted effect of Cu-Zn in C8 was found to be stronger than that in CO. Compared with CO, C8 showed smaller particle size, lower reduction temperature and larger BET and Cu surface areas.
基金supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT & Future Planning (2015M3D3A1A01064908)
文摘Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.
基金All thanks go to the contributions from all students,postdoctoral fellows,and visiting scholars.Special thanks are extended to the contributions from Prof.Jong Wook Bae(Sungkyunkwan University),Prof.Ruiqin Yang(Zhejiang University of Science and Technology),Prof.Yisheng Tan(Institute of Coal Chemistry,Chinese Academy of Sciences),Prof.Minbo Wu(China University of Petroleum),Prof.Xingang Li(Tianjin University),et al.Jie Yao appreciates the Grant-in-Aid for JSPS Fellows(JSPS KAKENHI 22J11458 and 22KJ1456).
文摘This review provides a comprehensive overview of the distinguished academic career and scientific accomplishments of Prof.Noritatsu Tsubaki at the University of Toyama.For over 35 years,he has dedicated himself to the research field of one-carbon(C1)chemistry,including catalytic conversion of C1 molecules to valuable chemicals and superclean fuels,innovative catalyst and reactor development,and the design of new catalytic reactions and processes.Organized chronologically,this review highlights Prof.Tsubaki’s academic contributions from 1990,when he studied and worked at The University of Tokyo,to his current role as a full professor at the University of Toyama.The academic section of this review is divided into three main parts,focusing on Prof.Tsubaki’s pioneering work in C1 chemistry.We believe that this review will serve as a highly valuable reference for colleagues in the fields of C1 chemistry and catalysis,and inspire the development of more original and groundbreaking research.
文摘A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.
文摘With the support by the National Natural Science Foundation of China,the research team led by Prof.Xiao FengShou(肖丰收)at Zhejiang University developed molecular-fence catalysts for selective oxidation of methane to methanol at low temperature,which was published in Science(2020,367:193—197).