期刊文献+
共找到169,194篇文章
< 1 2 250 >
每页显示 20 50 100
Molecular composition of low-temperature oxidation products of the heavy oil
1
作者 Shuai Ma Yun-Yun Li +5 位作者 Ri-Gu Su Xu-Sheng Wang Jing-Jun Pan Quan Shi Guang-Zhi Liao Chun-Ming Xu 《Petroleum Science》 SCIE EI CSCD 2023年第5期3264-3271,共8页
Low-temperature oxidation(LTO)is the main reaction that affects fuel formation in the in-situ combustion process,which has important significance for the subsequent combustion propulsion and the successful extraction ... Low-temperature oxidation(LTO)is the main reaction that affects fuel formation in the in-situ combustion process,which has important significance for the subsequent combustion propulsion and the successful extraction of crude oil.In this study,heavy oil was subjected to LTO reactions at different temperatures.Three types of reaction products with varying oxidation depths were characterized in terms of the number of oxygen atoms and the polarity of the molecule to reveal the low-temperature oxidation process of the heavy oil.Ketone compounds and acid polyoxides in the oil phase and deep oxidation products with a higher number of oxygen atoms in the coke were identified with increasing oxidation depth.The experimental results showed that the oxidation reaction of the heavy oil changed from kinetic-controlled to diffusion-controlled in the open oxidation system of the heavy oil as the oxidation depth increased.The oxidation reaction of the oil phase reached a maximum and stable value in oxygen content.The molecular compositions of the ketone compound and acid polyoxide did not change significantly with further increase in reaction temperature.The molecular compositions of the deep oxidation products with a higher number of oxygen atoms in the coke phase changed significantly.The coke precursor molecules with a lower oxygen content and condensation degree participated in the coke formation,and the oxidation reaction pathway and the complexity of the oxidation product component also increased. 展开更多
关键词 low-temperature oxidation In-situ combustion Heavy oil Coke precursor Molecular composition
下载PDF
Low-temperature oxidation behavior of MoSi_2 powders 被引量:2
2
作者 Peizhong Feng Xuanhui Qu +1 位作者 Islam S. Humail Xueli Du 《Journal of University of Science and Technology Beijing》 CSCD 2007年第6期558-561,共4页
The oxidation behavior of molybdenum disilicide (MoSi2) powders at 400, 500, and 600℃ for 12 h in air were investigated by using X-ray diffraction (XRD) and transmission electron microscopic (TEM) techniques. S... The oxidation behavior of molybdenum disilicide (MoSi2) powders at 400, 500, and 600℃ for 12 h in air were investigated by using X-ray diffraction (XRD) and transmission electron microscopic (TEM) techniques. Significant changes were observed in volume, mass, and color. Especially at 500℃, the volume expansion was found to be as high as 7-8 times, the color changed from black to yellow-white, and the mass gain was about 169.34% after 8 h, with SiO2 and MoO3 as main reaction products. The gains in volume and mass were less at 400 and 600℃ compared with those at 500℃, probably due to the less reaction rate at 400℃ and the formation of silica glass scale at 600℃, which would protect the matrix and restrain the diffusion of oxygen and molybdenum. Thus, the accelerated oxidation behavior of MoSi2 powder appeared at 500℃ and the volume expansion was the sign of accelerated oxidation. 展开更多
关键词 molybdenum disilicide low-temperature oxidation accelerated oxidation volume expansion
下载PDF
In situ catalytic upgrading of heavy crude oil through low-temperature oxidation 被引量:7
3
作者 Hu Jia Peng-Gang Liu +3 位作者 Wan-Fen Pu Xian-Ping Ma Jie Zhang Lu Gan 《Petroleum Science》 SCIE CAS CSCD 2016年第3期476-488,共13页
The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screenin... The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screening,oil-soluble catalysts,copper naphthenate and manganese naphthenate,are more attractive,and were selected to further investigate their catalytic performance in in situ upgrading of heavy oil.The heavy oil compositions and molecular structures were characterized by column chromatography,elemental analysis,and Fourier transform infrared spectrometry before and after reaction.An Arrhenius kinetics model was introduced to calculate the rheological activation energy of heavy oil from the viscosity-temperature characteristics.Results show that the two oil-soluble catalysts can crack part of heavy components into light components,decrease the heteroatom content,and achieve the transition of reaction mode from oxygen addition to bond scission.The calculated rheological activation energy of heavy oil from the fitted Arrhenius model is consistent with physical properties of heavy oil(oil viscosity and contents of heavy fractions).It is found that the temperature,oil composition,and internal molecular structures are the main factors affecting its flow ability.Oil-soluble catalyst-assisted air injection or air huff-n-puff injection is a promising in situ catalytic upgrading method for improving heavy oil recovery. 展开更多
关键词 In situ catalytic oxidation Heavy oil Upgrading low-temperature oxidation Mechanism
下载PDF
Low-temperature oxidation of light crude oil in oxygen-reduced air flooding
4
作者 QI Huan LI Yiqiang +7 位作者 CHEN Xiaolong LONG Anlin WEI Li LI Jie LUO Jianghao SUN Xuebin TANG Xiang GUAN Cuo 《Petroleum Exploration and Development》 CSCD 2021年第6期1393-1402,共10页
Light crude oil from the lower member of the Paleogene Xiaganchaigou Formation of Gaskule in Qinghai Oilfield was selected to carry out thermal kinetic analysis experiments and calculate the activation energy during t... Light crude oil from the lower member of the Paleogene Xiaganchaigou Formation of Gaskule in Qinghai Oilfield was selected to carry out thermal kinetic analysis experiments and calculate the activation energy during the oil oxidation process.The oxidation process of crude oi l in porous medium was modeled by crude oil static oxidation experiment,and the component changes of crude oil before and after low-temperature oxidation were compared through Fourier transform ion cy-clotron resonance mass spectrometry and gas chromatography;the dynamic displacement experiment of oxygen-reduced air was combined with NMR technology to analyze the oil recovery degree of oxygen-reduced air flooding.The whole process of crude oil oxidation can be divided into four stages:light hydrocarbon volatilization,low-temperature oxidation,fuel deposition,and high temperature oxidation;the high temperature oxidation stage needs the highest activation energy,followed by the fuel deposition stage,and the low-temperature oxidation stage needs the lowest activation energy;the concentration of oxygen in the reaction is negatively correlated with the activation energy required for the reaction;the higher the oxygen concentration,the lower the average activation energy required for oxidation reaction is;the low-temperature oxidation reaction between crude oil and air generates a large amount of heat and CO,CO_(2) and CH4,forming flue gas drive in the reservoir,which has certain effects of mixing phases,reducing viscosity,lowering interfacial tension and promoting expansion of crude oil,and thus helps enhance the oil recovery rate.Under suitable reservoir temperature condition,the degree of recovery of oxygen-reduced air flooding is higher than that of nitrogen flooding for all scales of pore throat,and the air/oxygen-reduced air flooding de-velopment should be preferred. 展开更多
关键词 light crude oil oxygen-reduced air flooding low-temperature oxidation thermal kinetics characteristics enhanced oil recovery
下载PDF
Properties,combustion behavior,and kinetic triplets of coke produced by low-temperature oxidation and pyrolysis:Implications for heavy oil in-situ combustion 被引量:4
5
作者 Shuai Zhao Wan-Fen Pu +6 位作者 Lei Su Ce Shang Yang Song Wei Li Hui-Zhuo He Yi-Gang Liu Zhe-Zhi Liu 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1483-1491,共9页
This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-... This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process. 展开更多
关键词 oxidized coke Pyrolyzed coke Heavy oil In-situ combustion Kinetic triplets
下载PDF
Changes in active functional groups during low-temperature oxidation of coal 被引量:16
6
作者 WANG Deming 《Mining Science and Technology》 EI CAS 2010年第1期35-40,共6页
Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation... Using Fourier Transform Infrared (FTIR) combined with an adiabatic oxidation test, temperature-programmed oxidation and gas analysis, we studied the changes of active functional groups during low-temperature oxidation of lignite, gas coal, fat coal and anthracite. During slow low-temperature heat accumulation, aliphatic hydrocarbons, such as methyl and methylene, are attacked by oxygen atoms absorbed by pores on coal surfaces, generating unstable solid intermediate carbon-oxygen complexes, which then decompose into gaseous products (CO, CO2) and stable solid complexes. At the accelerated oxidation stage, the stable complexes begin to decompose in large amounts and provided new active sites for further oxidation, while the aliphatic structures gained energy and fell from the benzene rings to produce CxHy and H2. 展开更多
关键词 活性官能团 煤氧化 中低温 傅立叶变换红外光谱 碳氢化合物 程序升温氧化 不稳定 氧化试验
下载PDF
Construction of a macromolecular structural model of Chinese lignite and analysis of its low-temperature oxidation behavior 被引量:10
7
作者 Xianliang Meng Mingqiang Gao +6 位作者 Ruizhi Chu Zhenyong Miao Guoguang Wu Lei Bai Peng Liu Yuanfang Yan Pengcheng Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1314-1321,共8页
The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combi... The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified. 展开更多
关键词 分子结构模型 低温氧化 褐煤 行为分析 傅立叶变换红外光谱 X射线光电子能谱 活性官能团 中国
下载PDF
CO Low-Temperature Oxidation over Au/MO_x/Al_2O_3 Catalysts 被引量:1
8
作者 WANGDonghui HAOZhengping 《催化学报》 SCIE CAS CSCD 北大核心 2002年第6期489-490,共2页
关键词 一氧化碳 低温氧化 Au/MOx/Al2O3 氧化铝 负载型催化剂
下载PDF
Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi 被引量:2
9
作者 Wang Caiping Xiao Yang +2 位作者 Li Qingwei Deng Jun Wang Kai 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期469-475,共7页
Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from... Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from the Ningtiaota, Jianxin, and Shigetai coal mines. Free radical concentrations at less than 120 °C were investigated by electron spin resonance experiments while the thermogravimetric experiments were conducted to analyze apparent activation energies. In addition, Fourier transform infrared spectroscopy was employed to study the spectrum of functional groups generated in coal. The results indicated that, in decreasing order, the apparent activation energies were Shigetai > Jianxin >Ningtiaota, indicating that, from 50 to 120 °C, the Ningtiaota coal sample most easily absorbed and reacted with oxygen while the most resistant was the Shigetai coal sample. Free radical concentrations and line heights increased with increased temperature, and the line width and Lande factor showed irregular fluctuations. Functional group variations were different among these coals, and the phenol and alcohol-associated OHs, carboxyls, and aromatic ring double bonds might have had a major impact on free radical concentrations. These results were meaningful for better consideration and management of coal oxidation at low temperatures. 展开更多
关键词 煤样品 低温度 氧化期 精力 激活 分子 自由 FOURIER
下载PDF
Highly active copper-intercalated weakly crystallizedδ-MnO2 for low-temperature oxidation of CO in dry and humid air
10
作者 Hao Zhang Huinan Li +2 位作者 Pengyi Zhang Tingxia Hu Xianjie Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第5期127-136,共10页
Copper intercalated birnessite MnO2(δ-MnO2)with weak crystallinity and high specific surface area(421 m2/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio o... Copper intercalated birnessite MnO2(δ-MnO2)with weak crystallinity and high specific surface area(421 m2/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio of Cu/Mn was as high as 0.37,which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species.In situ DRIFTS revealed strong bonding of copper ions with CO.As-synthesized MnO2-150Cu achieved 100%conversion of 250 ppm CO in normal air(3.1 ppm H2O)even at−10°C under the weight-hourly space velocity(WHSV)of 150 L/(g·h).In addition,it showed high oxygen storage capacity to oxidize CO in inert atmosphere.Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature,MnO2-150Cu could stably convert CO in 1.3%moisture air at 70°C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature.This study discovers the excellent low-temperature activity of weakly crystallizedδ-MnO2 induced by high content intercalated copper ions. 展开更多
关键词 CO oxidation BIRNESSITE Interlayer copper low-temperature Oxygen storage capacity
原文传递
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
11
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃
12
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
13
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation-low-temperature reduction
14
作者 Haoyan Sun Zheng Zou +1 位作者 Meiju Zhang Dong Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1057-1066,共10页
Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery vi... Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery via weak magnetic separation.We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite.We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550℃due to the unstable intermediate product magnetite(Fe_(3)O_(4)).Stable magnetite can be obtained through maghemite reduction only at low temperature.The optimal fluidized magnetization roasting parameters included preoxidation at 610℃for 2.5 min,followed by reduction at 450℃for 5 min.For roasted ore,weak magnetic separation yielded an iron ore concentrate grade of 62.0wt%and an iron recovery rate of 88.36%.Compared with that of conventional direct reduction magnetization roasting,the iron recovery rate of weak magnetic separation had greatly improved by 34.33%.The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore. 展开更多
关键词 magnetization roasting fluidization SIDERITE preoxdization low-temperature reduction
下载PDF
Effect of CuO species and oxygen vacancies over CuO/CeO_(2)catalysts on low-temperature oxidation of ethyl acetate
15
作者 Yuchuan Ye Liangjun Gao +3 位作者 Jing Xu Luhui Wang Liuye Mo Xiaodong Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第6期862-869,I0003,共9页
The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hyd... The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO_(2) catalyst(O-A)prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100%EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m^(2)/g),particle size of CuO(3.5 nm)and proportion of oxygen vacancies are prominent on the O-A catalyst.Oxygen vacancies in CeO_(2)support are beneficial to enhancing the adsorption and activation of the oxygen.More finely dispersed CuO particles and oxygen vacancies which are derived from the synergistic interaction of Cu-Ce species play an important role in the catalytic oxidation of EA. 展开更多
关键词 Ethyl acetate oxidation Low temperature CuO/CeO_(2) CueOeCe Oxygen vacancy Rare earths
原文传递
Low-temperature oxidation behavior and mechanism of semi-dry desulfurization ash from iron ore sintering flue gas 被引量:1
16
作者 Yi-fan Wang Yu-dong Zhang +3 位作者 Hong-ming Long Li-xin Qian Yun-fei Luo Ru-fei Wei 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第9期1075-1081,共7页
The low-temperature wet oxidation behavior of semi-dry desulfurization ash from iron ore sintering flue gas in ammonium citrate solution was investigated for efficiently utilizing the low-quality desulfurization ash. ... The low-temperature wet oxidation behavior of semi-dry desulfurization ash from iron ore sintering flue gas in ammonium citrate solution was investigated for efficiently utilizing the low-quality desulfurization ash. The effects of the ammonium citrate concentration, oxidation temperature, solid/liquid ratio, and oxidation time on the wet oxidation behavior of desulfurization ash were studied. Simultaneously, the oxidation mechanism of desulfurization ash was revealed by means of X-ray diffraction, Zeta electric resistance, and X-ray photoelectron spectroscopy (XPS) analysis. Under the optimal conditions with ammonium citrate, the oxidation ratio of CaSO_(3) was up to the maximum value (98.49%), while that of CaSO_(3) was only 8.92% without ammonium citrate. Zeta electric resistance and XPS results indicate that the dissolution process of CaSO_(3) could be significantly promoted by complexation derived from the ammonium citrate hydrolysis. As a result, the oxidation process of CaSO_(3) was transformed from particle oxidation to SO_(3)^(2−) ion oxidation, realizing the rapid transformation of desulfurization ash from CaSO_(3) to CaSO_(4) at low temperature. It provides a reference for the application of semi-dry desulfurization ash and contributes to sustainable management for semi-dry desulfurization ash. 展开更多
关键词 Semi-dry desulfurization ash Ammonium citrate Calcium sulfite Calcium sulfate Wet oxidation Sintering flue gas low-temperature oxidation
原文传递
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:1
17
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air 被引量:1
18
作者 Xinyao Sun Liu Zhao +5 位作者 Xu Hou Hao Zhou Huimin Qiao Chenggong Song Jing Huang Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期155-162,共8页
Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal ... Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion. 展开更多
关键词 Polymer wastes low-temperature combustion Metal oxides CeO_(2)
下载PDF
Cosmetic or Dietary Vegetable Oils Sampled in the Cameroonian Market May Not Expose Consumers to Lipid Oxidation Products Generating Oxidative Stress and Inflammation
19
作者 Ferdinand Kouoh Elombo Erika Van Damme +5 位作者 Clara Delepine David Depraetere Ludovic Chaveriat Paul Lunga Keilah Nico Fréderic Njayou Patrick Martin 《American Journal of Plant Sciences》 CAS 2024年第3期193-202,共10页
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ... Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned. 展开更多
关键词 Vegetable Oils Quality Control Labeling Compliance Lipid oxidation oxidative Pathology
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects
20
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部