The high nutrient and energy demand of tumor cells compared to normal cells to sustain rapid proliferation offer a potentially auspicious avenue for implementing starvation therapy.However,conventional starvation ther...The high nutrient and energy demand of tumor cells compared to normal cells to sustain rapid proliferation offer a potentially auspicious avenue for implementing starvation therapy.However,conventional starvation therapy,such as glucose exhaustion and vascular thrombosis,can lead to systemic toxicity and exacerbate tumor hypoxia.Herein,we developed a new“valve-off”starvation tactic,which was accomplished by closing the valve of glucose transporter protein 1(GLUT1).Specifically,dihydroartemisinin(DHA),2,20-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride(AI),and Ink were co-encapsulated in a sodium alginate(ALG)hydrogel.Upon irradiation with the 1064 nm laser,AI rapidly disintegrated into alkyl radicals(R·),which exacerbated the DHA-induced mitochondrial damage through the generation of reactive oxygen species and further reduced the synthesis of adenosine triphosphate(ATP).Simultaneously,the production of R·facilitated DHA-induced starvation therapy by suppressing GLUT1,which in turn reduced glucose uptake.Systematic in vivo and in vitro results suggested that this radical-enhanced“valveoff”strategy for inducing tumor cell starvation was effective in reducing glucose uptake and ATP levels.This integrated strategy induces tumor starvation with efficient tumor suppression,creating a new avenue for controlled,precise,and concerted tumor therapy.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn...The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis.展开更多
The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficienc...The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficiency.Herein,we have designed and synthesized an isoindigo(IID)dye.We used isoindigo as the molecular center and introduced common triphenylamine and methoxy groups as rotors.In order to improve the photothermal stability and tumor targeting ability,we encapsulated IID into nanoparticles.As a result,the nanoparticles exhibited high photothermal stability and photothermal conversion efficiency(67%)upon 635 nm laser irradiation.Thus,the nanoparticles demonstrated a significant inhibitory effect on live tumors in photothermal therapy guided by photoacoustic imaging and provided a viable strategy to overcome the treatment challenges.展开更多
Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for c...Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for catheter coating materials.Photothermal therapy(PTT)is a highly efficient bactericidal method.Here,a composite hydrogel containing MXene nanosheets and hydrophilic 3-sulfopropyl methacrylate potassium salt(SPMK)is reported,which is synthesized through the one-pot method and heat-initiated polymerization.The hydrogel shows excellent antibacterial performance against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)in 3 min in the air or 20 min in the water environment under near-infrared light(NIR;808 nm)irradiation.The friction coefficient of the hydrogel is about 0.11,which is 48%lower than that without SPMK.The rapid photothermal sterilization is attributed to the outstanding antibacterial ability and thermal effect of photoactivated MXene.The ultra-low friction is the result of the hydration lubrication mechanism.This study provides a potential strategy for the surface coatings of biomedical catheters,which enables rapid sterilization and extremely low interface resistance between catheters and biological tissues.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with...Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.展开更多
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ...Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.展开更多
Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors i...Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors is widely concerned.As carbonic anhydrase IX(CA IX)is abundantly distributed on the hypoxia tumor cells,it is considered as a potential tumor biomarker.4-(2-Aminoethyl)benzenesulfonamide(ABS)as a CA IX inhibitor has inherent inhibitory activity and good targeting effect.In this study,Ag_(2)S quantum dots(QDs)were used as the carrier to prepare a novel diagnostic and therapeutic bioprobe(Ag_(2)S@polyethylene glycol(PEG)-ABS)through ligand exchange and amide condensation reaction.Ag_(2)S@PEG-ABS can selectively target tumors by surface-modified ABS and achieve accurate tumor imaging by the near infrared-II(NIR-II)fluorescence characteristics of Ag_(2)S QDs.PEG modification of Ag_(2)S QDs greatly improves its water solubility and stability,and therefore achieves high photothermal stability and high photothermal conversion efficiency(PCE)of 45.17%.Under laser irradiation,Ag_(2)S@PEG-ABS has powerful photothermal and inherent antitumor combinations on colon cancer cells(CT-26)in vitro.It also has been proved that Ag_(2)S@PEG-ABS can realize the effective treatment of hypoxia tumors in vivo and show good biocompatibility.Therefore,it is a new efficient integrated platform for the diagnosis and treatment of hypoxia tumors.展开更多
Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a...Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products.展开更多
Solar-driven interfacial evaporation is a promising technology for desalination.The photothermal conversion materials are at the core and play a key role in thisfield.Design of photothermal conversion materials based o...Solar-driven interfacial evaporation is a promising technology for desalination.The photothermal conversion materials are at the core and play a key role in thisfield.Design of photothermal conversion materials based on organic dyes for desalina-tion is still a challenge due to lack of efficient guiding strategy.Herein,a new D(donor)-A(acceptor)type conjugated tetraphenylpyrazine(TPP)luminophore(namely TPP-2IND)was prepared as a photothermal conversion molecule.It exhib-ited a broad absorption spectrum and strongπ–πstacking in the solid state,resulting in efficient sunlight harvesting and boosting nonradiative decay.TPP-2IND powder exhibited high photothermal efficiency upon 660 nm laser irradiation(0.9 W cm-2),and the surface temperature can reach to 200◦C.Then,an interfacial heating system based on TPP-2IND is established successfully.The water evaporation rate and the solar-driven water evaporation efficiency were evaluated up to 1.04 kg m-2 h-1 and 65.8%under 1 sunlight,respectively.Thus,this novel solar-driven heating system shows high potential for desalination and stimulates the development of advanced photothermal conversion materials.展开更多
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h...With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.展开更多
Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was ...Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal the...Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.展开更多
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl...Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.展开更多
基金Funding support was provided by the National Natural Science Foundation of China(grant no.82071915)the Guang Dong Basic and Applied Basic Research Foundation(grant no.2022A1515220015)the Zhuhai City Department of science and technology(grant no.2220004000131)
文摘The high nutrient and energy demand of tumor cells compared to normal cells to sustain rapid proliferation offer a potentially auspicious avenue for implementing starvation therapy.However,conventional starvation therapy,such as glucose exhaustion and vascular thrombosis,can lead to systemic toxicity and exacerbate tumor hypoxia.Herein,we developed a new“valve-off”starvation tactic,which was accomplished by closing the valve of glucose transporter protein 1(GLUT1).Specifically,dihydroartemisinin(DHA),2,20-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride(AI),and Ink were co-encapsulated in a sodium alginate(ALG)hydrogel.Upon irradiation with the 1064 nm laser,AI rapidly disintegrated into alkyl radicals(R·),which exacerbated the DHA-induced mitochondrial damage through the generation of reactive oxygen species and further reduced the synthesis of adenosine triphosphate(ATP).Simultaneously,the production of R·facilitated DHA-induced starvation therapy by suppressing GLUT1,which in turn reduced glucose uptake.Systematic in vivo and in vitro results suggested that this radical-enhanced“valveoff”strategy for inducing tumor cell starvation was effective in reducing glucose uptake and ATP levels.This integrated strategy induces tumor starvation with efficient tumor suppression,creating a new avenue for controlled,precise,and concerted tumor therapy.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the National Natural Science Foundation of China(Grant Nos.21908052 and 22108200)the Key Program of the Natural Science Foundation of Hebei Province(Grant No.B2020209017)+2 种基金the Project of Science and Technology Innovation Team,Tangshan(Grant No.20130203D)the Natural Science Foundation of Zhejiang Province(Grant No.LQ22B060013)and the Science and Technology Project of Hebei Education Department(Grant No.QN2021113).
文摘The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis.
基金financially supported by the National Natural Science Foundation of China(22078046)Fundamental Research Fundamental Funds for the Central Universities(DUT22LAB601)+1 种基金Liaoning Binhai Laboratory(LBLB-2023-03)China Postdoctoral Science Foundation(2023M740487)。
文摘The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficiency.Herein,we have designed and synthesized an isoindigo(IID)dye.We used isoindigo as the molecular center and introduced common triphenylamine and methoxy groups as rotors.In order to improve the photothermal stability and tumor targeting ability,we encapsulated IID into nanoparticles.As a result,the nanoparticles exhibited high photothermal stability and photothermal conversion efficiency(67%)upon 635 nm laser irradiation.Thus,the nanoparticles demonstrated a significant inhibitory effect on live tumors in photothermal therapy guided by photoacoustic imaging and provided a viable strategy to overcome the treatment challenges.
基金support from the National Natural Science Foundation of China(No.52175187)the Fundamental Research Funds for the Central Universities(No.3102019JC001)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2023-TS-06).
文摘Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for catheter coating materials.Photothermal therapy(PTT)is a highly efficient bactericidal method.Here,a composite hydrogel containing MXene nanosheets and hydrophilic 3-sulfopropyl methacrylate potassium salt(SPMK)is reported,which is synthesized through the one-pot method and heat-initiated polymerization.The hydrogel shows excellent antibacterial performance against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)in 3 min in the air or 20 min in the water environment under near-infrared light(NIR;808 nm)irradiation.The friction coefficient of the hydrogel is about 0.11,which is 48%lower than that without SPMK.The rapid photothermal sterilization is attributed to the outstanding antibacterial ability and thermal effect of photoactivated MXene.The ultra-low friction is the result of the hydration lubrication mechanism.This study provides a potential strategy for the surface coatings of biomedical catheters,which enables rapid sterilization and extremely low interface resistance between catheters and biological tissues.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2022ME179,ZR2021QE086)the Shandong Provincial Key Research and Development Program(Public Welfare Science and Technology Research)(2019GGX103010)+2 种基金the Science and Technology Planning Project of Higher School in Shandong Province(J18KA243)the Liaocheng Key Research and Development Program(Policy guidance category)(2022YDSF90)the Liaocheng University High-level Talents&PhD Research Startup Foundation(318051619)。
文摘Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.
基金financially supported by National Natural Science Foundation of China(No.51902025)。
文摘Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.
基金supported by the National Natural Science Foundation of China(Grant Nos:82073808,82273885).
文摘Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors is widely concerned.As carbonic anhydrase IX(CA IX)is abundantly distributed on the hypoxia tumor cells,it is considered as a potential tumor biomarker.4-(2-Aminoethyl)benzenesulfonamide(ABS)as a CA IX inhibitor has inherent inhibitory activity and good targeting effect.In this study,Ag_(2)S quantum dots(QDs)were used as the carrier to prepare a novel diagnostic and therapeutic bioprobe(Ag_(2)S@polyethylene glycol(PEG)-ABS)through ligand exchange and amide condensation reaction.Ag_(2)S@PEG-ABS can selectively target tumors by surface-modified ABS and achieve accurate tumor imaging by the near infrared-II(NIR-II)fluorescence characteristics of Ag_(2)S QDs.PEG modification of Ag_(2)S QDs greatly improves its water solubility and stability,and therefore achieves high photothermal stability and high photothermal conversion efficiency(PCE)of 45.17%.Under laser irradiation,Ag_(2)S@PEG-ABS has powerful photothermal and inherent antitumor combinations on colon cancer cells(CT-26)in vitro.It also has been proved that Ag_(2)S@PEG-ABS can realize the effective treatment of hypoxia tumors in vivo and show good biocompatibility.Therefore,it is a new efficient integrated platform for the diagnosis and treatment of hypoxia tumors.
基金the National Natural Science Foundation of China(51303083)the National Natural Science Foundation of China for Excellent Young Scholars(51922050)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20191293)the Fundamental Research Funds for the Central Universities(30920021123)。
文摘Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173152,21805002The Fund of the Rising Stars of Shaanxi Province,Grant/Award Number:2021KJXX-48+5 种基金The Natural Science Basic Research Plan in Shaanxi Province of China,Grant/Award Number:2023-JC-QN-0163Young Talent Fund of University Association for Science and Technology in Shaanxi,China,Grant/Award Numbers:20190610,20210606Research Foundation of Education Department of Shaanxi Province,Grant/Award Number:21JK0487Scientific and Technological Innovation Team of Shaanxi Province,Grant/Award Number:2022TD-36Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2020A1515110476College Students’Innovative Entrepreneurial Training Plan Program of Baoji University of Arts and Sciences,Grant/Award Number:S202210721040。
文摘Solar-driven interfacial evaporation is a promising technology for desalination.The photothermal conversion materials are at the core and play a key role in thisfield.Design of photothermal conversion materials based on organic dyes for desalina-tion is still a challenge due to lack of efficient guiding strategy.Herein,a new D(donor)-A(acceptor)type conjugated tetraphenylpyrazine(TPP)luminophore(namely TPP-2IND)was prepared as a photothermal conversion molecule.It exhib-ited a broad absorption spectrum and strongπ–πstacking in the solid state,resulting in efficient sunlight harvesting and boosting nonradiative decay.TPP-2IND powder exhibited high photothermal efficiency upon 660 nm laser irradiation(0.9 W cm-2),and the surface temperature can reach to 200◦C.Then,an interfacial heating system based on TPP-2IND is established successfully.The water evaporation rate and the solar-driven water evaporation efficiency were evaluated up to 1.04 kg m-2 h-1 and 65.8%under 1 sunlight,respectively.Thus,this novel solar-driven heating system shows high potential for desalination and stimulates the development of advanced photothermal conversion materials.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20220618)the National Natural Science Foundation of China(Nos.22078028 and 21978026)。
文摘With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.
基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110152,2022A1515240007,and 2023A1515010562)Special Fund for the Sci-tech Innovation Strategy of Guangdong Province(STKJ202209083,STKJ202209066,2020ST006,210719165864287)+4 种基金Characteristic Innovation Project of Colleges and Universities in Guangdong(2021KTSCX030)Scientific Research Foundation of Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center(QD2221007)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG01A)STU Scientific Research Initiation Grant(NTF20005,NTF22018)Science and technology program of Guangzhou(202102021110).
文摘Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
基金financially supported by Shanghai Pujiang Program 23PJ1406500.
文摘Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.
基金financially supported by the National Natural Science Foundation of China(82101069,82102537,82160411,82002278)the Natural Science Foundation of Chongqing Science and Technology Commission(CSTC2021JCYJ-MSXMX0170,CSTB2022BSXM-JCX0039)+2 种基金the First Affiliated Hospital of Chongqing Medical University Cultivating Fund(PYJJ2021-02)the Beijing Municipal Science&Technology Commission(Z221100007422130)the Youth Incubation Program of Medical Science and Technology of PLA(21QNPY116).
文摘Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.