Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Me...Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Methods: A total of 118 children with OSAHS were divided into the control group (n=59) who received general surgery and the observation group (n=59) who received the low-temperature plasma radiofrequency surgery according to the random number table. Before operation and 24 h after operation, serum levels of stress hormones, acute phase proteins and inflammatory markers of two groups of children were determined, and the speech function parameter levels were assessed.Results:Before operation, differences in serum contents of stress hormones, acute phase proteins and inflammatory factors as well as speech function parameter levels were not statistically significant between two groups of patients. 24 h after operation, serum stress hormones adrenocorticotropic hormone (ACTH), angiotensin-2 (Ang-2), norepinephrine (NE), cortisol (Cor) contents of observation group were lower than those of control group, serum acute phase proteins haptoglobin (HP), ceruloplasmin (CER), and prealbumin (PA) contents were lower than those of control group, and serum inflammatory factors interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-27 (IL-27), tumor necrosis factorα(TNF-α) contents were lower than those of control group;speech function parameters NNE and NHR levels of observation group were higher than those of control group.Conclusion:Compared with routine surgery, low-temperature plasma radiofrequency surgery treatment of children with OSAHS causes less surgical trauma and more greatly improves the postoperative speech level.展开更多
The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), rea...The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria.展开更多
In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By ar...In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.展开更多
Low-temperature plasma(LTP)has shown great promise in wound healing,although the underlying mechanism remains poorly understood.In the present study,an argon atmospheric pressure plasma jet was employed to treat L929 ...Low-temperature plasma(LTP)has shown great promise in wound healing,although the underlying mechanism remains poorly understood.In the present study,an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice.The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation,secretion of epidermal growth factor(EGF)and transforming growth factor-β1(TGF-β1),production of intracellular reactive oxygen species(ROS),and the percentage of cells in S phase,protein expression of phosphorylated p65(P-p65)and cyclin D1,but a noted decrease in the protein expression of inhibitor kappa B(IκB).The in vivo experiments demonstrated that 30-s LTP treatment enhanced the number of fibroblasts and the ability of collagen synthesis,while 50-s treatment led to the opposite outcomes.These results suggested that LTP treatment promotes the fibroblast proliferation in wound healing by inducing the generation of ROS,upregulating the expression of P-p65,downregulating the expression of IκB,and activating the NF-κB signaling pathway and consequently altering cell cycle progression(increased DNA synthesis in S phage).展开更多
Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and l...Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.展开更多
Modification of poly(tetrafluoroethylene)(PTFE) films with 2-methacryloyloxyethyl phosphorylcholine(MPC) was performed by low-temperature plasma treatment and grafting polymerization.Surface properties of PTFE were ch...Modification of poly(tetrafluoroethylene)(PTFE) films with 2-methacryloyloxyethyl phosphorylcholine(MPC) was performed by low-temperature plasma treatment and grafting polymerization.Surface properties of PTFE were characterized by attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectra,X-ray photoelectron spectroscopy(XPS) ,and static contact angle.The results show that MPC has been grafted onto PTFE film surface successfully.Contact angle for the modified PTFE films in the water decreased from 108°to 58.25°,while surface energy increased from 17.52 mN/m to 45.47 mN/m.The effects of plasma treatment time,monomer concentration and grafting time on degree of grafting were determined.In the meanwhile,blood compatibility of the PTFE films was studied by checking thrombogenic time of blood plasma.展开更多
The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The p...The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The purpose of this study was to explore the killing effect of lowtemperature air plasma(LTAP)on extended-spectrum beta-lactamase-producing Escherichia coli and high level gentamycin resistance enterococci under two simulated environments in vitro.The results showed that the survival rate of these two kinds of bacteria decreased to less than20%after being treated by LTAP in different environments for 5 min.A comparison of the LTAP treatments showed that the killing efficacy of the two kinds of bacteria in the early stage(0-1 min)was up to 50%.Moreover,the results of transmission electron microscopy,reactive nitrogen species measurement,and a temperature test indicated that the bactericidal effect of the LTAP treatment on the two kinds of bacteria worked through the destruction of the ribosome and other organelles inside the bacteria,rather than the thermal effect,to achieve sterilization.展开更多
The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene...The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene concentration and reactor configuration play important roles in styrene removal efficiency (ηstyrene) and energy yield(EY).Values of ηstyrene and EY reached 96%and 15567 mg/kWh when the applied voltage,gas flow rate,inlet styrene concentration and layers of quartz tubes were set at 10.8 kV,5.0 m/s,229 mg/m^3 and 5 layers,respectively.A qualitative analysis of the byproducts and a detailed discussion of the reaction mechanism are also presented.The results could facilitate industrial applications of the new DBD reactor for waste gas treatment.展开更多
Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and o...Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.展开更多
Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presente...Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.展开更多
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating cur...Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.展开更多
The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon S...The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device(LEAD)in Southwestern Institute of Physics,China.It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly,while the low-density SMB can hardly affect the distribution of plasma density.This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma.Moreover,the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction.The simulation results can be used to analyze and explain the experimental results well.展开更多
In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment....In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.展开更多
Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namel...Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.展开更多
International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processi...International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processing. People can be rightly informed of the current devel- oping trend of this field from the contents of these symposia. This paper will introduce briefly a general overview of the 15th ISPC. As viewed from the number of papers and their contents, there is still abundant research on thermal plasma, and the needs fOr micro-electronic technology and high performance films have driven forward continuous and intensive development of the research on low-pressure, non-equilibrium plasmas, while the research on normal pressure, non-equilibrium plasma has become a new highlight in this field.展开更多
BACKGROUND MMP-2 also known as gelatinase A and MMP-7(matrilysin)are members of the zinc-dependent family of MMPs(Matrix metalloproteinase).MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix;MMP-2...BACKGROUND MMP-2 also known as gelatinase A and MMP-7(matrilysin)are members of the zinc-dependent family of MMPs(Matrix metalloproteinase).MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix;MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage,inflammation,and in stromal cells of metastatic tumors.MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors.Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible.Plasma obtained from preoperative(Preop)and postoperative blood samples was used.Only colorectal cancer(CRC)patients who underwent elective minimally invasive cancer resection with preop,post-operative day(POD)1,3 and at least 1 late postop sample(POD 7-34)were included.Late samples were bundled into 7 d blocks(POD 7-13,14-20,etc.)and treated as single time points.Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.RESULTS Total 88 minimally invasive CRC resection CRC patients were studied(right colectomy,37%;sigmoid,24%;and LAR/AR 18%).Cancer stages were:1,31%;2,30%;3,34%;and 4,5%.Mean Preop MMP-2 plasma level(ng/mL)was 179.3±40.9(n=88).Elevated mean levels were noted on POD1(214.3±51.2,n=87,P<0.001),POD3(258.0±63.9,n=80,P<0.001),POD7-13(229.9±62.3,n=65,P<0.001),POD 14-20(234.9±47.5,n=25,P<0.001),POD 21-27(237.0±63.5,n=17,P<0.001,)and POD 28-34(255.4±59.7,n=15,P<0.001).Mean Preop MMP-7 level was 3.9±1.9(n=88).No significant differences were noted on POD 1 or 3,however,significantly elevated levels were noted on POD 7-13(5.7±2.5,n=65,P<0.001),POD 14-20(5.9±2.5,n=25,P<0.001),POD 21-27(6.1±3.6,n=17,P=0.002)and on POD 28-34(6.8±3.3,n=15 P<0.001,)vs preop levels.CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6.The etiology of these changes in unclear,trauma and wound healing likely play a role.These changes may promote residual tumor growth and metastasis.展开更多
Purpose: Little research has been reported to date on the usefulness of olprinone in pediatric cardiac surgery, and no standard pediatric infusion protocol is currently established. Our study sought to confirm that th...Purpose: Little research has been reported to date on the usefulness of olprinone in pediatric cardiac surgery, and no standard pediatric infusion protocol is currently established. Our study sought to confirm that the regimen described herein rapidly achieves the requisite plasma olprinone concentrations. Methods: For the purposes of our study, we enrolled 13 patients: 7 biventricular repair candidates and 6 Fontan-type operation candidates. We administered a continuous infusion of olprinone to our study subjects at 0.3 μg/kg/min with no loading dose starting approximately 30 minutes (min) before weaning from cardiopulmonary bypass (CPB). We performed blood sampling at 15, 30, 45, 60, 90, and 120 min after the start of infusion and at the same elapsed intervals after separation from CPB. We measured plasma olprinone concentrations using ultra-fast liquid chromatography. Results: We observed effective plasma olpri-none concentrations (>20 ng/ml) at 30 min after weaning from CPB, or at 60 min after the start of infusion. Conclusion: We conclude that continuous olprinone infusion at 0.3 μg/kg/min without a loading dose initiated immediately after the release of aortic cross-clamping or immediately after the completion of all surgical procedures quickly and reliably achieves effective plasma concentrations.展开更多
Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading t...Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading to significant energy consumption and environmental pollution.Non-thermal plasma(NTP) is a promising alternative approach to ammonia synthesis at low temperature and atmospheric pressure.In this study,the synergistic effect of nanosecond pulsed dielectric barrier discharge(np-DBD) and Ni-MOF-74 catalyst was investigated in ammonia synthesis by utilizing nitrogen and hydrogen as feedstock.The results demonstrated that the plasma catalytic-synthesis process parameters play a crucial role in the synthesis process of ammonia.The highest ammonia synthesis rate of 5145.16 μmol·g^(-1)·h^(-1)with an energy efficiency of 1.27 g·kWh^(-1)was observed in the presence of the Ni-MOF-74 catalyst,which was3.7 times higher than that without Ni-MOF-74 catalyst.The synergistic effect of Ni-MOF-74catalyst and nanosecond pulsed plasma was explored by in-situ plasma discharge diagnostics.展开更多
Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in...Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.展开更多
文摘Objective:To evaluate the intraoperative trauma degree and postoperative speech function of low-temperature plasma radiofrequency surgery treatment of children with obstructive sleep apnea hypopnea syndrome (OSAHS).Methods: A total of 118 children with OSAHS were divided into the control group (n=59) who received general surgery and the observation group (n=59) who received the low-temperature plasma radiofrequency surgery according to the random number table. Before operation and 24 h after operation, serum levels of stress hormones, acute phase proteins and inflammatory markers of two groups of children were determined, and the speech function parameter levels were assessed.Results:Before operation, differences in serum contents of stress hormones, acute phase proteins and inflammatory factors as well as speech function parameter levels were not statistically significant between two groups of patients. 24 h after operation, serum stress hormones adrenocorticotropic hormone (ACTH), angiotensin-2 (Ang-2), norepinephrine (NE), cortisol (Cor) contents of observation group were lower than those of control group, serum acute phase proteins haptoglobin (HP), ceruloplasmin (CER), and prealbumin (PA) contents were lower than those of control group, and serum inflammatory factors interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-27 (IL-27), tumor necrosis factorα(TNF-α) contents were lower than those of control group;speech function parameters NNE and NHR levels of observation group were higher than those of control group.Conclusion:Compared with routine surgery, low-temperature plasma radiofrequency surgery treatment of children with OSAHS causes less surgical trauma and more greatly improves the postoperative speech level.
文摘The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria.
基金supported by the Major State Basic Research Program of China (No. 2009CB623404) National Natural Science Foundation of China (Nos. 20736003, 20676067)+2 种基金 National High Technology Research and Development Program of China (No. 2007AA06Z317)Foundation of Ministry of Education of China (No. 20070003130)Foundation of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-08A01)
文摘In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.
基金supported by the National Natural Science Foundation of China(Nos.81372076,51677146,51521065 and 51307133)the Sci-Tech Project of Shaanxi Province(No.2010K16-04)
文摘Low-temperature plasma(LTP)has shown great promise in wound healing,although the underlying mechanism remains poorly understood.In the present study,an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice.The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation,secretion of epidermal growth factor(EGF)and transforming growth factor-β1(TGF-β1),production of intracellular reactive oxygen species(ROS),and the percentage of cells in S phase,protein expression of phosphorylated p65(P-p65)and cyclin D1,but a noted decrease in the protein expression of inhibitor kappa B(IκB).The in vivo experiments demonstrated that 30-s LTP treatment enhanced the number of fibroblasts and the ability of collagen synthesis,while 50-s treatment led to the opposite outcomes.These results suggested that LTP treatment promotes the fibroblast proliferation in wound healing by inducing the generation of ROS,upregulating the expression of P-p65,downregulating the expression of IκB,and activating the NF-κB signaling pathway and consequently altering cell cycle progression(increased DNA synthesis in S phage).
基金supported by National Natural Science Foundation of China(Nos.51677083 and 51377075)Postgraduate Research and Practice Innovation Program of Jiangsu Province(SJCX18_0340)
文摘Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.
文摘Modification of poly(tetrafluoroethylene)(PTFE) films with 2-methacryloyloxyethyl phosphorylcholine(MPC) was performed by low-temperature plasma treatment and grafting polymerization.Surface properties of PTFE were characterized by attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectra,X-ray photoelectron spectroscopy(XPS) ,and static contact angle.The results show that MPC has been grafted onto PTFE film surface successfully.Contact angle for the modified PTFE films in the water decreased from 108°to 58.25°,while surface energy increased from 17.52 mN/m to 45.47 mN/m.The effects of plasma treatment time,monomer concentration and grafting time on degree of grafting were determined.In the meanwhile,blood compatibility of the PTFE films was studied by checking thrombogenic time of blood plasma.
文摘The high incidence of catheter-associated urinary tract infections,which are dominated by drugresistant bacteria,has attracted an increasing number of researchers interested in solving this public health problem.The purpose of this study was to explore the killing effect of lowtemperature air plasma(LTAP)on extended-spectrum beta-lactamase-producing Escherichia coli and high level gentamycin resistance enterococci under two simulated environments in vitro.The results showed that the survival rate of these two kinds of bacteria decreased to less than20%after being treated by LTAP in different environments for 5 min.A comparison of the LTAP treatments showed that the killing efficacy of the two kinds of bacteria in the early stage(0-1 min)was up to 50%.Moreover,the results of transmission electron microscopy,reactive nitrogen species measurement,and a temperature test indicated that the bactericidal effect of the LTAP treatment on the two kinds of bacteria worked through the destruction of the ribosome and other organelles inside the bacteria,rather than the thermal effect,to achieve sterilization.
基金supported by Key Project of Science and Technology Commission of Shanghai Municipality(No.13231201903)National Key Technology R&D Program of China(No.2011BAJ07B04)
文摘The destruction of gaseous styrene was studied using a low-temperature plasma induced by tubular multilayer dielectric barrier discharge(DBD).The results indicate that the applied voltage,gas flow rate,inlet styrene concentration and reactor configuration play important roles in styrene removal efficiency (ηstyrene) and energy yield(EY).Values of ηstyrene and EY reached 96%and 15567 mg/kWh when the applied voltage,gas flow rate,inlet styrene concentration and layers of quartz tubes were set at 10.8 kV,5.0 m/s,229 mg/m^3 and 5 layers,respectively.A qualitative analysis of the byproducts and a detailed discussion of the reaction mechanism are also presented.The results could facilitate industrial applications of the new DBD reactor for waste gas treatment.
文摘Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.
基金supported by National Natural Science Foundation of China(Nos.10675121,10705028 and 10605025)National Basic Research Program of China(No.2008CB717800)
文摘Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.
基金supported by National Natural Science Foundation of China(No.51176001)
文摘Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.
基金National Natural Science Foundation of China(Grant Nos.11575121,11275133,and 11575055)the National Magnetic Confinement Fusion Program of China(Grant No.2014GB125004).
文摘The interaction between the supersonic molecular beam(SMB)and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device.In this work,the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device(LEAD)in Southwestern Institute of Physics,China.It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly,while the low-density SMB can hardly affect the distribution of plasma density.This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma.Moreover,the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction.The simulation results can be used to analyze and explain the experimental results well.
文摘In this study, a low-temperature annealed ohmic contact process was proposed on AlGaN/GaN heterostructure field effect transistors (HFETs) with the assistance of inductively coupled plasma (ICP) surface treatment. The effect of ICP treatment process on the 2DEG channel as well as the formation mechanism of the low annealing temperature ohmic contact was investigated. An appropriate residual AlGaN thickness and a plasma-induced damage are considered to contribute to the low-temperature annealed ohmic contact. By using a single Al layer to replace the conventional Ti/Al stacks, ohmic contact with a contact resistance of 0.35 Ω.mm was obtained when annealed at 575 ℃ for 3 min. Good ohmic contact was also obtained by annealing at 500 ℃ for 20 rain.
基金We would like to thank Mr Chuankai Xia and Dr Chunjun Yang for providing Trichophyton rubrumA portion of this work(ESR measurement)was performed with assistant of Dr Wei Tong on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,CASThis work is supported by National Natural Science Foundation of China(Nos.11635013 and 11775272).
文摘Fungal infection of human nails,or onychomycosis,affects 10%of the world's adult population,but current therapies have various drawbacks.In this work,we employed a self-made low-temperature plasma(LTP)device,namely,an atmospheric-pressure plasma jet(APPJ)device to treat the nails infected with Trichophyton rubrum(T.rubrum)with the aid of persulfate solution.We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis.With addition of sodium persulfate,the APPJ therapy could cure onychomycosis after several times of treatment.As such,this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.
文摘International Symposium on Plasma Chemistry (ISPC) is the most influencial in- ternational symposium on science and technology research of low-temperature plasma, especially in the fields related to materials processing. People can be rightly informed of the current devel- oping trend of this field from the contents of these symposia. This paper will introduce briefly a general overview of the 15th ISPC. As viewed from the number of papers and their contents, there is still abundant research on thermal plasma, and the needs fOr micro-electronic technology and high performance films have driven forward continuous and intensive development of the research on low-pressure, non-equilibrium plasmas, while the research on normal pressure, non-equilibrium plasma has become a new highlight in this field.
文摘BACKGROUND MMP-2 also known as gelatinase A and MMP-7(matrilysin)are members of the zinc-dependent family of MMPs(Matrix metalloproteinase).MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix;MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage,inflammation,and in stromal cells of metastatic tumors.MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors.Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible.Plasma obtained from preoperative(Preop)and postoperative blood samples was used.Only colorectal cancer(CRC)patients who underwent elective minimally invasive cancer resection with preop,post-operative day(POD)1,3 and at least 1 late postop sample(POD 7-34)were included.Late samples were bundled into 7 d blocks(POD 7-13,14-20,etc.)and treated as single time points.Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.RESULTS Total 88 minimally invasive CRC resection CRC patients were studied(right colectomy,37%;sigmoid,24%;and LAR/AR 18%).Cancer stages were:1,31%;2,30%;3,34%;and 4,5%.Mean Preop MMP-2 plasma level(ng/mL)was 179.3±40.9(n=88).Elevated mean levels were noted on POD1(214.3±51.2,n=87,P<0.001),POD3(258.0±63.9,n=80,P<0.001),POD7-13(229.9±62.3,n=65,P<0.001),POD 14-20(234.9±47.5,n=25,P<0.001),POD 21-27(237.0±63.5,n=17,P<0.001,)and POD 28-34(255.4±59.7,n=15,P<0.001).Mean Preop MMP-7 level was 3.9±1.9(n=88).No significant differences were noted on POD 1 or 3,however,significantly elevated levels were noted on POD 7-13(5.7±2.5,n=65,P<0.001),POD 14-20(5.9±2.5,n=25,P<0.001),POD 21-27(6.1±3.6,n=17,P=0.002)and on POD 28-34(6.8±3.3,n=15 P<0.001,)vs preop levels.CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6.The etiology of these changes in unclear,trauma and wound healing likely play a role.These changes may promote residual tumor growth and metastasis.
文摘Purpose: Little research has been reported to date on the usefulness of olprinone in pediatric cardiac surgery, and no standard pediatric infusion protocol is currently established. Our study sought to confirm that the regimen described herein rapidly achieves the requisite plasma olprinone concentrations. Methods: For the purposes of our study, we enrolled 13 patients: 7 biventricular repair candidates and 6 Fontan-type operation candidates. We administered a continuous infusion of olprinone to our study subjects at 0.3 μg/kg/min with no loading dose starting approximately 30 minutes (min) before weaning from cardiopulmonary bypass (CPB). We performed blood sampling at 15, 30, 45, 60, 90, and 120 min after the start of infusion and at the same elapsed intervals after separation from CPB. We measured plasma olprinone concentrations using ultra-fast liquid chromatography. Results: We observed effective plasma olpri-none concentrations (>20 ng/ml) at 30 min after weaning from CPB, or at 60 min after the start of infusion. Conclusion: We conclude that continuous olprinone infusion at 0.3 μg/kg/min without a loading dose initiated immediately after the release of aortic cross-clamping or immediately after the completion of all surgical procedures quickly and reliably achieves effective plasma concentrations.
基金the financial support from the Beijing Municipal Natural Science Foundation (No. 1242015)National Undergraduate Innovation and Entrepreneurship Training Program of China (No. 202310015019)Discipline Construction of Material Science and Engineering(Nos. 21090122014 and 21090123007)。
文摘Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading to significant energy consumption and environmental pollution.Non-thermal plasma(NTP) is a promising alternative approach to ammonia synthesis at low temperature and atmospheric pressure.In this study,the synergistic effect of nanosecond pulsed dielectric barrier discharge(np-DBD) and Ni-MOF-74 catalyst was investigated in ammonia synthesis by utilizing nitrogen and hydrogen as feedstock.The results demonstrated that the plasma catalytic-synthesis process parameters play a crucial role in the synthesis process of ammonia.The highest ammonia synthesis rate of 5145.16 μmol·g^(-1)·h^(-1)with an energy efficiency of 1.27 g·kWh^(-1)was observed in the presence of the Ni-MOF-74 catalyst,which was3.7 times higher than that without Ni-MOF-74 catalyst.The synergistic effect of Ni-MOF-74catalyst and nanosecond pulsed plasma was explored by in-situ plasma discharge diagnostics.
文摘Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented.