期刊文献+
共找到209,741篇文章
< 1 2 250 >
每页显示 20 50 100
Low-Temperature Reforming Products Coupling Spark Plug on Gasoline Compression Ignition and Combustion Characteristics under Low-Load Condition
1
作者 LIU Long LI Mingkun +2 位作者 CAO Qun WANG Yang WANG Xichang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2386-2398,共13页
Gasoline compression combustion engine has the advantages of low emission and high efficiency,which is very promising for research,but it is difficult to apply under low-load conditions.Gasoline has the characteristic... Gasoline compression combustion engine has the advantages of low emission and high efficiency,which is very promising for research,but it is difficult to apply under low-load conditions.Gasoline has the characteristics of low reactivity;in the case of low thermodynamic state in the cylinder,the fire delay period of the fuel is longer,and the combustion phase is relatively lagging,which will lead to the increase of combustion cycle fluctuations,and even difficult to ignite and other adverse combustion phenomena.In order to improve the combustion stability of Gasoline Compression Ignition(GCI)engine under low-load condition and expand the limit of low-load combustion boundary,gasoline was reformed without catalyst under the boundary condition of reforming temperature of 488 K and reforming equivalent ratio of 8,and the concentration of reformed product was measured by a gas detection device.Subsequently,the coupling of the reformed product and spark plug with GCI engine under low-load condition was investigated to analyze the effect on engine combustion and emission.The results showed that the initial combustion timing of the low-load GCI engine was late,but the addition of reformed products could advance the combustion phase,shorten the combustion duration,reduce single-cycle NOx emission,and improve the small-load operation characteristics of GCI engine.Coupled spark plug ignition on the basis of adding reformed products could further improve the problem of combustion stability under low-load GCI engine.And the optimization effect became more obvious as the ignition position of the spark plug moves down.However,spark plug ignition would cause local high temperature areas,resulting in an increase in NOx,emission. 展开更多
关键词 GASOLINE low-temperature reform spark plug COMBUSTION EMISSION
原文传递
Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst
2
作者 仇松柏 宫璐 +3 位作者 刘璐 洪成贵 袁丽霞 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期211-217,I0004,共8页
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp... We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods. 展开更多
关键词 BIO-OIL HYDROGEN Steam reforming Ni/HZSM-5 catalyst
下载PDF
Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects
3
作者 Tianbao MA Yauheni KALENKOVICH +1 位作者 Valeriy ROKACH Anatoly OSIPOV 《Plasma Science and Technology》 2025年第1期73-80,共8页
The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g... The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered. 展开更多
关键词 low-temperature atmospheric pressure plasma parameters of plasma-exciting signals energy consumption reactive and apparent power plasma-object interaction
下载PDF
Steam Methane Reforming(SMR)Combined with Ship Based Carbon Capture(SBCC)for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas(LNG)Carriers
4
作者 Ikram Belmehdi Boumedienne Beladjine +2 位作者 Mohamed Djermouni Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 2025年第1期71-85,共15页
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner... The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint. 展开更多
关键词 Carbon dioxide(CO_(2))emissions blue hydrogen boil-off gas(BOG) steam methane reforming(SMR) ship-based carbon capture(SBCC)
下载PDF
Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce catalysts 被引量:2
5
作者 Yimin Zhang Ruiming Zeng +4 位作者 Yun Zu Linhua Zhu Yi Mei Yongming Luo Dedong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期76-90,共15页
The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical... The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical catalysts of SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce were designed and prepared.Importantly,the difference in the chemical speciations of active sites on the Ni-based catalysts is revealed by advanced characterizations and further estimates respective catalytic performance for LTDRM.Results show that larger[Ni0-]particles mixed with[Ni-O-Sin])species on the Ni/SiO_(2)(R)make CH_(4) excessive decomposition,leading to poor activity and stability.Once the Ce species is doped,however,superior activity(59.0%CH_(4) and 59.8%CO_(2) conversions),stability and high H_(2)/CO ratio(0.96)at 600℃ can be achieved on the Ni-Ce/SiO_(2)(R),in comparison with other catalysts and even reported studies.The improved performance can be ascribed to the formation of integral([Ni0_(n))]-[CeⅢ-□-CeⅢ])species on the Ni-Ce/SiO_(2)(R)catalyst,containing highly dispersed[Ni]particles and rich oxygen vacancies,which can synergistically establish a new stable balance between gasification of carbon species and CO_(2) dissocia-tion.With respect to Ni-Ce/γ-Al_(2)O_(3)(R),the Ni and Ce precursors are easily captured by extra-framework Al_(n)-OH groups and further form stable isolated([Ni0_(n))]-[Ni-O-Al_(n)])and[CeⅢ-O-Al_(n)]species.In such a case,both of them preferentially accelerate CO_(2) adsorption and dissociation,causing more car-bon deposition due to the disproportionation of superfuous CO product.This deep distinguishment of chemical speciations of active sites can guide us to further develop new efficient Ni-based catalysts for LTDRM in the future. 展开更多
关键词 CO_(2)dry reforming of methane low-temperature Ni-based catalysts Chemical speciations reforming reaction mechanisms
下载PDF
Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach over CoZnAI Catalyst
6
作者 林少斌 叶同奇 +2 位作者 袁丽霞 侯滔 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期451-458,I0002,共9页
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products ... High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil. 展开更多
关键词 HYDROGEN BIO-OIL CoZnAl catalyst Electrochemical catalytic reforming
下载PDF
Low CO content hydrogen production from oxidative steam reforming of ethanol over CuO-CeO_2 catalysts at low-temperature 被引量:1
7
作者 Xue Han Yunbo Yu +1 位作者 Hong He Jiaojiao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期861-868,共8页
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive... CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol. 展开更多
关键词 CuO-CeO2 catalyst hydrogen production oxidative steam reforming low-temperature
下载PDF
Trifunctional strategy for the design and synthesis of a Ni-CeO_(2)@SiO_(2)catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming 被引量:5
8
作者 Sixue Lin Jing Wang +5 位作者 Yangyang Mi Senyou Yang Zheng Wang Wenming Liu Daishe Wu Honggen Peng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1808-1820,共13页
In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)cata... In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization. 展开更多
关键词 Methane dry forming low-temperature stability Coke resistance Tri functional strategy CO_(2)utilization
下载PDF
Low-temperature utilization of CO_2 and CH_4 by combining partial oxidation with reforming of methane over Ru-based catalysts 被引量:1
9
作者 Hongbing Ji Danyan Feng Yunbing He 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期575-582,共8页
Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3... Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature. 展开更多
关键词 combined reaction partial oxidation of methane carbon dioxide reforming of methane synthesis gas RUTHENIUM
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
10
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
11
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
12
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2) 被引量:1
13
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Upcycling municipal solid waste to sustainable hydrogen via two-stage gasification-reforming
14
作者 Hui Zhou Shuzhuang Sun +3 位作者 Yikai Xu Yeshui Zhang Shouliang Yi Chunfei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期611-624,共14页
As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)prese... As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application. 展开更多
关键词 Municipal solidwaste Upcycling GASIFICATION reforming HYDROGEN
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
15
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
16
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
17
作者 Weigang Hu Haoqi Liu +7 位作者 Yuankun Zhang Jiawei Ji Guangjun Li Xiao Cai Xu Liu Wen Wu Xu Weiping Ding Yan Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1079-1084,共6页
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can... Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production. 展开更多
关键词 NANOCLUSTER PHOTOCATALYSIS Methanol steam reforming Atomically precise Copper catalyst
下载PDF
Chemical looping reforming of the micromolecular component from biomass pyrolysis via Fe_(2)O_(3)@SBA-16
18
作者 Yunchang Li Bo Zhang +3 位作者 Xiantan Yang Bolun Yang Shengyong Zhang Zhiqiang Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期120-134,共15页
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s... To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming. 展开更多
关键词 Biomass pyrolysis METHANE Chemical looping reforming Oxygen carrier Kinetic analysis
下载PDF
Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries
19
作者 Yongchao Kang Feng Zhang +6 位作者 Houzhen Li Wangran Wei Huitong Dong Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期104-113,共10页
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf... Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries. 展开更多
关键词 aqueous zinc-ion batteries high performance inner solvation structure low polarity co-solvent low-temperature electrolyte
下载PDF
Optimizing the sulfur-resistance and activity of perovskite oxygen carrier for chemical looping dry reforming of methane
20
作者 Yuelun Li Dong Tian +6 位作者 Lei jiang Huicong Zuo LiNan Huang Mingyi Chen Jianchun Zuo Hua Wang Kongzhai Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期259-271,共13页
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu... Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance. 展开更多
关键词 Perovskite oxygen carriers Chemical looping reforming Sulfur-resistance Dual substitution SYNGAS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部