●AIM:To study the different treatment modalities needed in cases of Duane’s Retraction Syndrome(DRS).●METHODS:This prospective study undergone in more than four years,in Alexandria,included 238 patients of DRS,incl...●AIM:To study the different treatment modalities needed in cases of Duane’s Retraction Syndrome(DRS).●METHODS:This prospective study undergone in more than four years,in Alexandria,included 238 patients of DRS,including type I,162 patients(68%),type II 12 patients(5%)and type III 64 patients(27%).Surgery was indicated in 98(41%)of them,to eliminate abnormal head posture,deviation of the eye in primary position,severe retraction of the globe or cosmetically unacceptable upshoot with attempted adduction.●RESULTS:Type I was the most common and type II was the least.Females were predominant in this study,constituting 125 patients(52.5%),and males 113 patients(47.5%).Left eye was more affected,in 110 patients(46.2%),right eye in 91 patients(38.2%)and bilateral in 37 patients(15.6%).Amblyopia was found in 27 patients(11.3%)and treated in 13 patients under 10 years of age,by patching the normal eye.Ninety-eight patients(41%)were operated,the results were most satisfactory and a nomogram is followed in the surgical plan.●CONCLUSION:The surgical management is needed in less than half of the cases and should be planned for every case individually according to the clinical findings,planned nomogram and modified intraoperatively according to the anatomical findings during surgery.展开更多
To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the...To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the stiffener-ring parameters influence the mechanical properties of the pier column.12 scale model specimens(including nine specimens with stiffener-ring widths of 40,50,and 60 mm and three unstiffened comparison specimens)were tested under axial compression.Based on the test results,the specimen load-displacement,load-deflection,and load-strain curves were analyzed,and a finite-element model of a pier column under axial compression was established to determine the optimal stiffener size.The results show that setting a stiffener ring enhances the cooperative working ability between the steel pipe and the internal filling material and restrains the lateral deformation of the pier column,thereby improving the ultimate bearing capacity and overall stability of the pier column.The ultimate bearing capacity of the pier column is related to the width and thickness of the stiffener ring.The optimal size of the stiffener ring of the model pier column is 70 mm in width and 4 mm in thickness.The present research results provide a reference for designing compressible pier columns and column stiffening in mines and have important practical significance.展开更多
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship betw...Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.展开更多
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was c...The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.展开更多
文摘●AIM:To study the different treatment modalities needed in cases of Duane’s Retraction Syndrome(DRS).●METHODS:This prospective study undergone in more than four years,in Alexandria,included 238 patients of DRS,including type I,162 patients(68%),type II 12 patients(5%)and type III 64 patients(27%).Surgery was indicated in 98(41%)of them,to eliminate abnormal head posture,deviation of the eye in primary position,severe retraction of the globe or cosmetically unacceptable upshoot with attempted adduction.●RESULTS:Type I was the most common and type II was the least.Females were predominant in this study,constituting 125 patients(52.5%),and males 113 patients(47.5%).Left eye was more affected,in 110 patients(46.2%),right eye in 91 patients(38.2%)and bilateral in 37 patients(15.6%).Amblyopia was found in 27 patients(11.3%)and treated in 13 patients under 10 years of age,by patching the normal eye.Ninety-eight patients(41%)were operated,the results were most satisfactory and a nomogram is followed in the surgical plan.●CONCLUSION:The surgical management is needed in less than half of the cases and should be planned for every case individually according to the clinical findings,planned nomogram and modified intraoperatively according to the anatomical findings during surgery.
文摘To solve the problem that the overlapping parts of a retractable pier column are prone to damage,this paper proposed the reinforcing measure of setting a stiffener ring at the bottom of the steel pipe.To study how the stiffener-ring parameters influence the mechanical properties of the pier column.12 scale model specimens(including nine specimens with stiffener-ring widths of 40,50,and 60 mm and three unstiffened comparison specimens)were tested under axial compression.Based on the test results,the specimen load-displacement,load-deflection,and load-strain curves were analyzed,and a finite-element model of a pier column under axial compression was established to determine the optimal stiffener size.The results show that setting a stiffener ring enhances the cooperative working ability between the steel pipe and the internal filling material and restrains the lateral deformation of the pier column,thereby improving the ultimate bearing capacity and overall stability of the pier column.The ultimate bearing capacity of the pier column is related to the width and thickness of the stiffener ring.The optimal size of the stiffener ring of the model pier column is 70 mm in width and 4 mm in thickness.The present research results provide a reference for designing compressible pier columns and column stiffening in mines and have important practical significance.
基金supported by National 973 Project of China(No.2012CB026104)Undergraduate Training Programs for Innovation and Entrepreneurship of Heilongjiang(No.20140222038)+2 种基金Shen Hua Group Innovation Project(No.201212240384)National Natural Science Foundation of China(Nos.41430634,51174261,51078111)State Key Laboratory of Frozen Soils Engineering Open Foundation(No.SKLFSE201216)for which the authors are grateful
文摘Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.
文摘The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.