Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an...Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h...With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general p...Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general population, further research is needed to understand the reality of hypertension within the custodial setting. This study aimed to investigate the factors associated with arterial hypertension in custodial settings in southern Benin in 2023. Methods: This was a cross-sectional, descriptive, analytical study held in prisons in southern Benin from March to April 2023, involving inmates selected by two-stage random sampling. In the first stage, four prisons out of the six in the southern region of Benin were selected by simple random sampling. In the second stage, the prisoners were selected by systematic random sampling, with the sampling frame being the numbered list of eligible prisoners in each prison selected. Data collected by observation and questionnaire survey were analyzed using Stata 11 software. Hypertension was defined as systolic blood pressure ≥ 140 mmHg and diastolic blood pressure ≥ 90 mmHg. Overweight was defined by a body mass index (weight/height<sup>2</sup> (kg/m<sup>2</sup>) ≥ 25. Factors associated with hypertension were identified by multiple logistic regression, at a 5% threshold of significance. Results: Altogether 336 inmates aged 37.55 ± 1.72 years were surveyed. The prevalence of hypertension in custodial settings in southern Benin in 2023 was 31.32% (95% CI [17.06;52.57]). Associated factors were inmate age (ORa = 3.36 95% CI: [1.94;5.85]) and abnormal waist circumference (ORa = 2.61 95% CI [1.27;5.40]). Conclusion: The prevalence of arterial hypertension in prisons of southern Benin (31.32%) is high when compared with the national average (25.9% (22.5-29.3)). The ministries of the Interior and Health need to collaborate to involve inmates in preventive strategies for non-communicable diseases, including hypertension.展开更多
Objective:To evaluate and compare the effect of semi-rigid ureterorenoscopy on post-procedural sexual function with three different operating room settings.Methods:In this prospective randomized study,consecutive sexu...Objective:To evaluate and compare the effect of semi-rigid ureterorenoscopy on post-procedural sexual function with three different operating room settings.Methods:In this prospective randomized study,consecutive sexually active patients with normal pre-operative sexual function undergoing uncomplicated semi-rigid ureterorenoscopy for distal ureteric stones were randomized into three groups,with three different operating room settings.Procedure-related anxiety and sexual function were assessed pre-operatively using Amsterdam Preoperative Anxiety and Information Scale and Brief Sexual Function Inventory(in males)and Female Sexual Function Index-6(in females),respectively.All the participants were stented following the procedure,and the stent was removed after 3 weeks.Post-procedural sexual function and general discomfort were assessed and compared between three groups at 1 week,3 weeks,and 12 weeks.The effect of surgery-related anxiety,preoperative sexual function,age,and general discomfort(including stent-related discomfort)on post-procedural sexual function were analyzed using multiple regression analysis.A p-value of less than 0.05 was considered statistically significant.Results:Totally,327 eligible patients were randomized into three groups.The group of patients who underwent the procedural with a screen separating the operating area from the patient vision,while the patient could watch the endoscopy through a separate monitor,had better post-procedural sexual function compared to those who had total vision of the operating area as well as to those whose eyes were blocked.This difference was statistically significant.This post-procedural reduction in sexual function could not be attributed to in situ stent alone.Conclusions:Our study showed that semi-rigid ureterorenoscopy can have significant negative effect on sexual function,which can be reduced with proper preoperative counseling and an ideal operating room settings.展开更多
Introduction: Standard procedures for surgical fixation of proximal femoral fractures (PFF) require an image intensifier which in developing countries remains a luxury. We hypothesized that, with a well-codified techn...Introduction: Standard procedures for surgical fixation of proximal femoral fractures (PFF) require an image intensifier which in developing countries remains a luxury. We hypothesized that, with a well-codified technique, the Watson Jones approach (WJA) without image intensifier nor traction table, can allow open reduction and internal fixation (ORIF) of PFF using Dynamic hip screw (DHS), with satisfactory outcome. Patients and methods: Forty one consecutive patients (mean age 59.5 ± 21.6 years, 61% males) who were followed in a Teaching Hospital for PFF treated by ORIF using the WJA and DHS from January 2016 to December 2020 were reassessed. The outcome measures were the quality of the reduction, the positioning of the implants, the tip-apex distance (TAD), the rate and delay of consolidation, the functional results using Postel Merle d’Aubigné (PMA) score, the rate of surgical site infection (SSI) and the overall mortality. Logistic regression was used to determine factors associated with mechanical failure. Results: The mean follow-up period was 33.8 ± 15.0 months. Fracture reduction was good in 31 (75.6%) cases and acceptable in 8(19.5%) cases. Implant position was fair to good in 37 (90.2%) patients. The mean TAD was 26.1 ± 3.9 mm. Three patients developed SSI. Consolidation was achieved in 38 (92.6%) patients. The functional results were good to excellent in 80.5% of patients. The overall mortality rate was 7.3%. There were an association between mechanical failure and osteoporosis (p = 0.04), fracture reduction (p = 0.003), and TAD (p = 0.025). In multivariate logistic regression, no independent factors were predictive of mechanical failure. Conclusion: This study shows that ORIF using DHS for PFF via the Watson-Jones approach without an image intensifier can give satisfactory anatomical and functional outcomes in low-resource settings. It provides and validates a reliable and reproducible technique that deserves to be diffused to surgeons in austere areas over the world.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei...The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.展开更多
With the development of the global economy and the quick growth of international exchanges,Business English major plays an increasingly important role in higher education.The training goal of Business English major(pu...With the development of the global economy and the quick growth of international exchanges,Business English major plays an increasingly important role in higher education.The training goal of Business English major(publishing direction)has gradually shifted from the improvement of studentslanguage abilities to the cultivation of more specialized business knowledge and publishing skills.As an important course for Business English majors(publishing direction),Printing English is of great significance for cultivating studentsprofessional quality,professional competitiveness,career development,and practical ability.From the perspective of curriculum setting,it is necessary to re-understand the importance of Printing English in the curriculum setting of Business English major(publishing direction),and put forward corresponding teaching methods and strategies.展开更多
To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi...To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.展开更多
Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
The olivine-type lithium iron phosphate(LiFePO_(4))cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost,environmental fri...The olivine-type lithium iron phosphate(LiFePO_(4))cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost,environmental friendliness,and high safety.At present,LiFePO_(4)/C sec-ondary batteries are widely used for electronic products,automotive power batteries,and other occasion-related applications with good thermal stability,stable cycle performance,and low room-temperature self-discharge rate.However,LiFePO_(4)-based battery applications are seriously limited when they are operated in a cold climate.This outcome is due to a considerable decrease in Li+transport capabilities within the elec-trode,particularly leading to a dramatic decrease in the electrochemical capacity and power performance of the electrolyte.Therefore,the design of low-temperature electrolytes is important for the further commercial application of LiFePO_(4) batteries.This paper reviews the key factors for the poor low-temperature performance of LiFePO_(4)-based batteries and the research progress of low-temperature electrolytes.Spe-cial attention is paid to electrolyte components,including lithium salts,cosolvents,additives,and the development of new electrolytes.The factors affecting the anode are also analyzed.Finally,according to the current research progress,some viewpoints are summarized to provide suitable modification methods and research suggestions for improving the practicability of LiFePO_(4)/C commercial batteries at low temperat-ures in the future.展开更多
Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,...Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.展开更多
Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching ...Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs.展开更多
基金This work was supported by the Major Science and Technology Projects in Anhui Province,China(202003b06020021)the Natural Science Foundation of Anhui Province,China(2008085QC122)+1 种基金the Postgraduate Quality Engineering Project in Anhui Province,China(2022cxcysj0066)the Special Fund for Anhui Agriculture Research System,China.
文摘Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20220618)the National Natural Science Foundation of China(Nos.22078028 and 21978026)。
文摘With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs.
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
文摘Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general population, further research is needed to understand the reality of hypertension within the custodial setting. This study aimed to investigate the factors associated with arterial hypertension in custodial settings in southern Benin in 2023. Methods: This was a cross-sectional, descriptive, analytical study held in prisons in southern Benin from March to April 2023, involving inmates selected by two-stage random sampling. In the first stage, four prisons out of the six in the southern region of Benin were selected by simple random sampling. In the second stage, the prisoners were selected by systematic random sampling, with the sampling frame being the numbered list of eligible prisoners in each prison selected. Data collected by observation and questionnaire survey were analyzed using Stata 11 software. Hypertension was defined as systolic blood pressure ≥ 140 mmHg and diastolic blood pressure ≥ 90 mmHg. Overweight was defined by a body mass index (weight/height<sup>2</sup> (kg/m<sup>2</sup>) ≥ 25. Factors associated with hypertension were identified by multiple logistic regression, at a 5% threshold of significance. Results: Altogether 336 inmates aged 37.55 ± 1.72 years were surveyed. The prevalence of hypertension in custodial settings in southern Benin in 2023 was 31.32% (95% CI [17.06;52.57]). Associated factors were inmate age (ORa = 3.36 95% CI: [1.94;5.85]) and abnormal waist circumference (ORa = 2.61 95% CI [1.27;5.40]). Conclusion: The prevalence of arterial hypertension in prisons of southern Benin (31.32%) is high when compared with the national average (25.9% (22.5-29.3)). The ministries of the Interior and Health need to collaborate to involve inmates in preventive strategies for non-communicable diseases, including hypertension.
文摘Objective:To evaluate and compare the effect of semi-rigid ureterorenoscopy on post-procedural sexual function with three different operating room settings.Methods:In this prospective randomized study,consecutive sexually active patients with normal pre-operative sexual function undergoing uncomplicated semi-rigid ureterorenoscopy for distal ureteric stones were randomized into three groups,with three different operating room settings.Procedure-related anxiety and sexual function were assessed pre-operatively using Amsterdam Preoperative Anxiety and Information Scale and Brief Sexual Function Inventory(in males)and Female Sexual Function Index-6(in females),respectively.All the participants were stented following the procedure,and the stent was removed after 3 weeks.Post-procedural sexual function and general discomfort were assessed and compared between three groups at 1 week,3 weeks,and 12 weeks.The effect of surgery-related anxiety,preoperative sexual function,age,and general discomfort(including stent-related discomfort)on post-procedural sexual function were analyzed using multiple regression analysis.A p-value of less than 0.05 was considered statistically significant.Results:Totally,327 eligible patients were randomized into three groups.The group of patients who underwent the procedural with a screen separating the operating area from the patient vision,while the patient could watch the endoscopy through a separate monitor,had better post-procedural sexual function compared to those who had total vision of the operating area as well as to those whose eyes were blocked.This difference was statistically significant.This post-procedural reduction in sexual function could not be attributed to in situ stent alone.Conclusions:Our study showed that semi-rigid ureterorenoscopy can have significant negative effect on sexual function,which can be reduced with proper preoperative counseling and an ideal operating room settings.
文摘Introduction: Standard procedures for surgical fixation of proximal femoral fractures (PFF) require an image intensifier which in developing countries remains a luxury. We hypothesized that, with a well-codified technique, the Watson Jones approach (WJA) without image intensifier nor traction table, can allow open reduction and internal fixation (ORIF) of PFF using Dynamic hip screw (DHS), with satisfactory outcome. Patients and methods: Forty one consecutive patients (mean age 59.5 ± 21.6 years, 61% males) who were followed in a Teaching Hospital for PFF treated by ORIF using the WJA and DHS from January 2016 to December 2020 were reassessed. The outcome measures were the quality of the reduction, the positioning of the implants, the tip-apex distance (TAD), the rate and delay of consolidation, the functional results using Postel Merle d’Aubigné (PMA) score, the rate of surgical site infection (SSI) and the overall mortality. Logistic regression was used to determine factors associated with mechanical failure. Results: The mean follow-up period was 33.8 ± 15.0 months. Fracture reduction was good in 31 (75.6%) cases and acceptable in 8(19.5%) cases. Implant position was fair to good in 37 (90.2%) patients. The mean TAD was 26.1 ± 3.9 mm. Three patients developed SSI. Consolidation was achieved in 38 (92.6%) patients. The functional results were good to excellent in 80.5% of patients. The overall mortality rate was 7.3%. There were an association between mechanical failure and osteoporosis (p = 0.04), fracture reduction (p = 0.003), and TAD (p = 0.025). In multivariate logistic regression, no independent factors were predictive of mechanical failure. Conclusion: This study shows that ORIF using DHS for PFF via the Watson-Jones approach without an image intensifier can give satisfactory anatomical and functional outcomes in low-resource settings. It provides and validates a reliable and reproducible technique that deserves to be diffused to surgeons in austere areas over the world.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
基金The study was conducted within the framework of the state task(topic ID 0350-2019-0007)and supported by grant 20-55-44002-Mong_a of the Russian Foundation for Basic Research.
文摘The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.
文摘With the development of the global economy and the quick growth of international exchanges,Business English major plays an increasingly important role in higher education.The training goal of Business English major(publishing direction)has gradually shifted from the improvement of studentslanguage abilities to the cultivation of more specialized business knowledge and publishing skills.As an important course for Business English majors(publishing direction),Printing English is of great significance for cultivating studentsprofessional quality,professional competitiveness,career development,and practical ability.From the perspective of curriculum setting,it is necessary to re-understand the importance of Printing English in the curriculum setting of Business English major(publishing direction),and put forward corresponding teaching methods and strategies.
文摘To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.
基金supported by the National Natural Science Foundation of China (No. 52102470)Guangxi Innovation Driven Development Project (No. AA17204100)
文摘The olivine-type lithium iron phosphate(LiFePO_(4))cathode material is promising and widely used as a high-performance lithium-ion battery cathode material in commercial batteries due to its low cost,environmental friendliness,and high safety.At present,LiFePO_(4)/C sec-ondary batteries are widely used for electronic products,automotive power batteries,and other occasion-related applications with good thermal stability,stable cycle performance,and low room-temperature self-discharge rate.However,LiFePO_(4)-based battery applications are seriously limited when they are operated in a cold climate.This outcome is due to a considerable decrease in Li+transport capabilities within the elec-trode,particularly leading to a dramatic decrease in the electrochemical capacity and power performance of the electrolyte.Therefore,the design of low-temperature electrolytes is important for the further commercial application of LiFePO_(4) batteries.This paper reviews the key factors for the poor low-temperature performance of LiFePO_(4)-based batteries and the research progress of low-temperature electrolytes.Spe-cial attention is paid to electrolyte components,including lithium salts,cosolvents,additives,and the development of new electrolytes.The factors affecting the anode are also analyzed.Finally,according to the current research progress,some viewpoints are summarized to provide suitable modification methods and research suggestions for improving the practicability of LiFePO_(4)/C commercial batteries at low temperat-ures in the future.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.KYYJ202116)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2020]the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.
基金the support from the Fundamental Research Funds for the Central Universities of Chongqing University(No.2020CDCGCL005)。
文摘Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs.