Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of gr...Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies.展开更多
To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three...To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.展开更多
Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through ...Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.展开更多
In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, i...In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, it is important to have spinning reserves in the grid and dispatchable power available, both offered by CSP-plants with integrated thermal energy storage. Enolcon is developing a new TES-system since several years. The system itself was designed to offer a principle simple and robust setup (with regard to execution and operation) and which is reducing the electricity costs of CSP-power plants by the consequent use of state of the art technology. Furthermore, such system shall be open to future developments of CSP-systems with regard to increasing steam temperatures and steam pressure. Such TES-system shall be commercially available for large scale application already in year 2014/2015. The key elements of the enolcon-TES are the open cycle using always ambient air with an air-air-heat exchanger and the arrangement of the storage material in such way to minimize the pressure losses and the own electricity consumption. The development is progressing in a structured way by studies, engineering works, TES-pilot plants, isothermal air flow test plant for the verification of the CFD-calculations, and since end of 2012 by the operation of a high temperature TES-module with all features of the large scale modules.展开更多
Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by ...Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by Joule heat generation remains a persistent challenge to overcome.Here,the solution-processed polyimide(PI)nanocomposites with unique two-dimensional(2D)alumina nanoplates are reported.Substantial improvements in the breakdown strength,charge–discharge efficiency and discharged energy density at elevated temperatures have been demonstrated in the composites,owing to simultaneously suppressed conduction loss and increased thermal conductivity upon the incorporation of 2D Al_(2)O_(3) nanofillers possessing excellent dielectric insulation and thermophysical properties.The predominance of Al_(2)O_(3) nanoplates in enhancing thermal stability and high-temperature capacitive performance over nanoparticles and nanowires is validated experimentally and is further rationalized via finite element simulations.Notably,the Al_(2)O_(3) nanoplates filled PI nanocomposite exhibits a hightemperature capability up to 200℃ and remarkable efficiency(e.g.≥95% at 200 MV/m)over a wide temperature range,which outperforms commercial dielectric polymers and rivals the state-of-the-art polyimide nanocomposites.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa...To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.展开更多
This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source o...This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.展开更多
It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate...It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate international models from ASHRAE Standard 55 and EN16798-1.This study,however,has instead considered a regional Brazilian adaptive comfort model.This study investigates the energy demand arising from the use of a local Brazilian comfort model in order to assess the energy implications from the use of the worldwide ASHRAE Standard 55 adaptive model and various fixed setpoint temperatures.All of Brazil’s climate zones,full air-conditioning,mixed-mode building operating modes,present-day climate change scenarios,and future scenarios—specifically Representative Concentration Pathways(RCP)2.6,4.5,and 8.5 for the years 2050 and 2100—have all been taken into account in building energy simulations.The use of adaptive setpoint temperatures based on the Brazilian local model considering mixed-mode has been found to significantly reduce energy consumption when compared to static setpoint temperatures(average energy-saving values ranging from 52%to 58%)and the ASHRAE 55 adaptive model(average values ranging from 15%to 21%).Considering climate change and the mixed-mode Brazilian model,the overall energy demand for the three groups of climatic zones(annual average outdoor temperatures≤21℃,>21 and≤25℃and>25℃)ranged between 2%decrease and 5%increase,4%and 27%increase,and 13%and 45%increase,respectively.It is concluded as a consequence that setting setpoint temperatures based on the Brazilian local adaptive comfort model is a very efficient energy-saving method.展开更多
This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combinat...This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.展开更多
In modern metallurgical industry,microwave thermal technique has many advantages as one efficient energy treatment in an electromagnetic form,such as internal self-generated heat,easy access to control a volumetric he...In modern metallurgical industry,microwave thermal technique has many advantages as one efficient energy treatment in an electromagnetic form,such as internal self-generated heat,easy access to control a volumetric heating process,and consensus on cleanliness,convenience and high efficiency of energy use.Both permittivity and permeability of molybdenite concentrate were measured for a further discussion about its electromagnetic heating coupling.A bidirectional coupling physics field in numerical modeling was undertaken to evaluate the microwave absorption potential and dielectric heating performance of molybdenite concentrate by the multi-physics finite element method.The electromagnetic morphology and the field distribution strength were described in the microwave reaction cavity.The electromagnetic field strength and the dissipation coefficient induced by temperature variation were represented throughout the whole heat chamber and at key parts of interest.Dependent temperature distribution was compared with that being obtained from a scenario by thermal conduction with a stable heat source.The molybdenite concentrate would be heated at surrounding temperature up to 593℃for 10 min by microwave energy that was transmitted by a rectangular waveguide.Scanning electron microscopy(SEM)patterns suggested that the polished and neat crystalline molybdenum trioxide(MoO_(3))products were achieved by the microwave heating process.The superiority via utilizing microwave thermal technique is expounded in the preparation strategy for molybdenum oxide or molybdenum metal.展开更多
In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal...In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal comfort.Split-type vapor-compression air-conditioners(SVAC)are mainly used for space cooling in SSA and consume 60-80%of total energy consumption in commercial and public buildings.Appropriate control strategy of the indoor set-point temperature of SVAC can result in significant energy savings in these buildings.In this study,modeling and dynamic simulation have been conducted using EnergyPlus to predict the energy saving potential and indoor thermal comfort of buildings in hot-humid climates by controlling set-point temperature of the SVAC.In a case study,climatic data for Ghana,was used to predict the energy saving potential and indoor thermal comfort.The study results revealed that,to ensure indoor thermal comfort at high outdoor temperature condition of 35°C,the least and optimum set-point temperatures of the SVAC should be 21°C and 25°C,respectively.On the other hand,for low outdoor temperature condition,the least and optimum set-point temperatures were 22°C and 26°C,respectively.Considering 1-star and 2-star rated SVACs which are dominantly used in Ghana,operating at 21-25°C in the case of high outdoor conditions,and 22-26°C for low outdoor conditions relative to the least temperatures resulted in energy savings of 8-33%and 12-44%,respectively.展开更多
Temperature distribution of water inside of thermal storage tank reflects the condition of cooling energy stored in the tank. It can be used to define important parameters required for evaluation the performance of th...Temperature distribution of water inside of thermal storage tank reflects the condition of cooling energy stored in the tank. It can be used to define important parameters required for evaluation the performance of thermal storage tank. In this study, the thermocline thickness was evaluated for two cases of charging cycles: case Ⅰ at 393 m^3 / hr and case Ⅰ at 524 m^3 / hr. Hourly data were used for the study. Curve fitting approach was used to plot the temperature distribution profiles. Results obtained revealed that the fitting function enabled quantification of thermocline thickness of the thermal storage tank. The parameters that were determined are average cool-warm water temperatures and cool water depth in the tank. The approach offer an advantage to determine the thermocline thickness based on functionally relationship of temperature distribution profile. Results obtained shown that thermocline thickness increases at the higher flow rate. This was due to increased mixing of cool and warm water. It was also noted that thicker thermocline occurred in the region nearby the inlet diffuser. The findings indicate that the operating thermal energy storage as performing as a stratified tank.展开更多
The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 com...The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).展开更多
An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoo...An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.展开更多
基金funding by Bundesministerium der Verteidigung(BMVg),Germany。
文摘Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of China
文摘To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.
文摘Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.
文摘In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, it is important to have spinning reserves in the grid and dispatchable power available, both offered by CSP-plants with integrated thermal energy storage. Enolcon is developing a new TES-system since several years. The system itself was designed to offer a principle simple and robust setup (with regard to execution and operation) and which is reducing the electricity costs of CSP-power plants by the consequent use of state of the art technology. Furthermore, such system shall be open to future developments of CSP-systems with regard to increasing steam temperatures and steam pressure. Such TES-system shall be commercially available for large scale application already in year 2014/2015. The key elements of the enolcon-TES are the open cycle using always ambient air with an air-air-heat exchanger and the arrangement of the storage material in such way to minimize the pressure losses and the own electricity consumption. The development is progressing in a structured way by studies, engineering works, TES-pilot plants, isothermal air flow test plant for the verification of the CFD-calculations, and since end of 2012 by the operation of a high temperature TES-module with all features of the large scale modules.
基金supported by National Natural Science Foundation of China(Nos.52107232 and 52377026)China Postdoctoral Science Foundation(No.2021M702563)+2 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE22312)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)and Fundamental Research Funds for the Central Universities(No.xzy012024004).
文摘Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by Joule heat generation remains a persistent challenge to overcome.Here,the solution-processed polyimide(PI)nanocomposites with unique two-dimensional(2D)alumina nanoplates are reported.Substantial improvements in the breakdown strength,charge–discharge efficiency and discharged energy density at elevated temperatures have been demonstrated in the composites,owing to simultaneously suppressed conduction loss and increased thermal conductivity upon the incorporation of 2D Al_(2)O_(3) nanofillers possessing excellent dielectric insulation and thermophysical properties.The predominance of Al_(2)O_(3) nanoplates in enhancing thermal stability and high-temperature capacitive performance over nanoparticles and nanowires is validated experimentally and is further rationalized via finite element simulations.Notably,the Al_(2)O_(3) nanoplates filled PI nanocomposite exhibits a hightemperature capability up to 200℃ and remarkable efficiency(e.g.≥95% at 200 MV/m)over a wide temperature range,which outperforms commercial dielectric polymers and rivals the state-of-the-art polyimide nanocomposites.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.
文摘This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.
基金This study was funded by the Urban Innovative Actions initiative(European Commission),under the research project UIA04-212 Energy Poverty Intelligence Unit(EPIU),the Spanish Ministry of Science and Innovation,under the research project PID2021-122437OA-I00“Positive Energy Buildings Potential for Climate Change Adaptation and Energy Poverty Mitigation(+ENERPOT)”the Andalusian Ministry of Development,Articulation of the Territory and Housing,under the research project US.22-02“Implicaciones en la mitigación del cambio climático y de la pobreza energética mediante nuevo modelo de confort adaptativo para viviendas sociales(ImplicAdapt)”.The authors also acknowledge the support provided by the Thematic Network 722RT0135“Red Iberoamericana de Pobreza Energética y Bienestar Ambiental(RIPEBA)”financed by the call for Thematic Networks of the CYTED Program for 2021.
文摘It has been found in recent years that using setpoint temperatures based on adaptive thermal comfort models is a successful method of energy conservation.Recent studies using adaptive setpoint temperatures incorporate international models from ASHRAE Standard 55 and EN16798-1.This study,however,has instead considered a regional Brazilian adaptive comfort model.This study investigates the energy demand arising from the use of a local Brazilian comfort model in order to assess the energy implications from the use of the worldwide ASHRAE Standard 55 adaptive model and various fixed setpoint temperatures.All of Brazil’s climate zones,full air-conditioning,mixed-mode building operating modes,present-day climate change scenarios,and future scenarios—specifically Representative Concentration Pathways(RCP)2.6,4.5,and 8.5 for the years 2050 and 2100—have all been taken into account in building energy simulations.The use of adaptive setpoint temperatures based on the Brazilian local model considering mixed-mode has been found to significantly reduce energy consumption when compared to static setpoint temperatures(average energy-saving values ranging from 52%to 58%)and the ASHRAE 55 adaptive model(average values ranging from 15%to 21%).Considering climate change and the mixed-mode Brazilian model,the overall energy demand for the three groups of climatic zones(annual average outdoor temperatures≤21℃,>21 and≤25℃and>25℃)ranged between 2%decrease and 5%increase,4%and 27%increase,and 13%and 45%increase,respectively.It is concluded as a consequence that setting setpoint temperatures based on the Brazilian local adaptive comfort model is a very efficient energy-saving method.
文摘This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.
基金Educational Science and Technology Project,Educational Department of Guizhou Province,China(No.2022005)。
文摘In modern metallurgical industry,microwave thermal technique has many advantages as one efficient energy treatment in an electromagnetic form,such as internal self-generated heat,easy access to control a volumetric heating process,and consensus on cleanliness,convenience and high efficiency of energy use.Both permittivity and permeability of molybdenite concentrate were measured for a further discussion about its electromagnetic heating coupling.A bidirectional coupling physics field in numerical modeling was undertaken to evaluate the microwave absorption potential and dielectric heating performance of molybdenite concentrate by the multi-physics finite element method.The electromagnetic morphology and the field distribution strength were described in the microwave reaction cavity.The electromagnetic field strength and the dissipation coefficient induced by temperature variation were represented throughout the whole heat chamber and at key parts of interest.Dependent temperature distribution was compared with that being obtained from a scenario by thermal conduction with a stable heat source.The molybdenite concentrate would be heated at surrounding temperature up to 593℃for 10 min by microwave energy that was transmitted by a rectangular waveguide.Scanning electron microscopy(SEM)patterns suggested that the polished and neat crystalline molybdenum trioxide(MoO_(3))products were achieved by the microwave heating process.The superiority via utilizing microwave thermal technique is expounded in the preparation strategy for molybdenum oxide or molybdenum metal.
文摘In hot-humid climates,particularly in sub-Saharan Africa(SSA),ambient temperatures and relative humidity are as high as 35°C and 84%,respectively,requiring the use of mechanical cooling systems for indoor thermal comfort.Split-type vapor-compression air-conditioners(SVAC)are mainly used for space cooling in SSA and consume 60-80%of total energy consumption in commercial and public buildings.Appropriate control strategy of the indoor set-point temperature of SVAC can result in significant energy savings in these buildings.In this study,modeling and dynamic simulation have been conducted using EnergyPlus to predict the energy saving potential and indoor thermal comfort of buildings in hot-humid climates by controlling set-point temperature of the SVAC.In a case study,climatic data for Ghana,was used to predict the energy saving potential and indoor thermal comfort.The study results revealed that,to ensure indoor thermal comfort at high outdoor temperature condition of 35°C,the least and optimum set-point temperatures of the SVAC should be 21°C and 25°C,respectively.On the other hand,for low outdoor temperature condition,the least and optimum set-point temperatures were 22°C and 26°C,respectively.Considering 1-star and 2-star rated SVACs which are dominantly used in Ghana,operating at 21-25°C in the case of high outdoor conditions,and 22-26°C for low outdoor conditions relative to the least temperatures resulted in energy savings of 8-33%and 12-44%,respectively.
文摘Temperature distribution of water inside of thermal storage tank reflects the condition of cooling energy stored in the tank. It can be used to define important parameters required for evaluation the performance of thermal storage tank. In this study, the thermocline thickness was evaluated for two cases of charging cycles: case Ⅰ at 393 m^3 / hr and case Ⅰ at 524 m^3 / hr. Hourly data were used for the study. Curve fitting approach was used to plot the temperature distribution profiles. Results obtained revealed that the fitting function enabled quantification of thermocline thickness of the thermal storage tank. The parameters that were determined are average cool-warm water temperatures and cool water depth in the tank. The approach offer an advantage to determine the thermocline thickness based on functionally relationship of temperature distribution profile. Results obtained shown that thermocline thickness increases at the higher flow rate. This was due to increased mixing of cool and warm water. It was also noted that thicker thermocline occurred in the region nearby the inlet diffuser. The findings indicate that the operating thermal energy storage as performing as a stratified tank.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2011CBA00111)the National Natural Science Foundation of China(Grant Nos.51322105,U1632158,51301165,and 51301167)
文摘The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).
基金The National Natural Science Foundation of China(No.51308295,51206080)China Postdoctoral Science Foundation(No.2013M531368)
文摘An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.