The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in...Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection de...A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulatio...A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.展开更多
Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new eff...Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.展开更多
With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Pytho...With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.展开更多
Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltag...Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltage EMC varied linearly with the discharging voltage in the range investigated. But for ceramic powders, the discharging voltage has an optimal value. Under the value, the density increases as discharging voltage rises, but beyond the value the trend is reverse. The experimental results show that the density of the metal parts decreases gradually along press direction. And the density of the ceramic parts decreases with the advancement of the aspect ratio h/d (height/diameter). In addition, repetitive compaction can improve the density of both metal and ceramic parts and reduce the effects of aspect ratio on the density.展开更多
Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based tr...Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.展开更多
This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and...This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.展开更多
Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance i...Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance in low-voltage distribution system, and seriously affect the quality of power supply. A new type of the commutation system and an improved quantum genetic algorithm (IQGA) are proposed in the paper. At last, the rationality and the efficiency of the method are verified by a practical example.展开更多
The low-voltage-electromagnetic forming was applied to powder compaction.A series of experiments was performed to compact aluminum,copper and tin powders in an indirect working way.Having compacted high-density powder...The low-voltage-electromagnetic forming was applied to powder compaction.A series of experiments was performed to compact aluminum,copper and tin powders in an indirect working way.Having compacted high-density powder parts successfully,the authors analyzed the effects of voltage,capacitance,friction,compaction times,powder size and other factors on the densities of compacted specimens.The experimental results show that lower voltage but larger capacitance are beneficial to increasing the density and homogeneity of the compacted specimens,if the loading velocity and discharging energy are suitable.The higher the voltage,the greater the percentage of energy consumed by friction.If the equipment energy is limited,the iterative compaction is an efficient way to manufacture homogeneous and high-density powder parts.展开更多
This paper focuses on the simulation of the low-voltage arc with an opening contact. A controllable experiment setup with a rotating contact is designed to investigate the arc behaviour. Supported by the experiment, t...This paper focuses on the simulation of the low-voltage arc with an opening contact. A controllable experiment setup with a rotating contact is designed to investigate the arc behaviour. Supported by the experiment, the phenomena of arc elongation and commutation in the case of rotating contact are simulated with the dynamic grid technique introduced. Under the given condition of the external magnetic field and the contact rotating velocity, the stagnation and rapid jump of two arc roots are observed by the calculated and experimental arc root displacement. The voltage of arc column can be divided into four phases and its sharp rising progress comes from the increase of the displacement difference between two arc roots in x direction.展开更多
Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-di...Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.展开更多
Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based...Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of the signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM communication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over low-voltage powerline using OFDM when the transmitted power is large enough.展开更多
It is necessary to take measures against infectious diseases in the Southeast Asian prawn farming industry. In giant tiger prawn (Penaeus monodon) aquaculture, diseases caused by viruses such as white spot syndrome ...It is necessary to take measures against infectious diseases in the Southeast Asian prawn farming industry. In giant tiger prawn (Penaeus monodon) aquaculture, diseases caused by viruses such as white spot syndrome virus (WSSV) and bacteria such as Vibrio have become a menace. Appropriate treatments of prawn culture pond's waters are advocated for preventing and controlling pathogens. The purpose of this study was to conduct an antimicrobial water treatment using a low-voltage pulsed electric field sterilization. Here we prepared a mechanical low-voltage pulsed electric field system with copper wire coiling around a titanium ring. The viability of WSSV in seawater was examined by prawn infectivity experiments. We inoculated healthy prawns (approximately 10-15 g) with the WSSV master sample that passed 0-3 times through the system. WSSV infection in prawns decreased according to the number of passes through the system. Healthy prawns survived for〉 10 days without feeding, where as prawns inoculated with the WSSV master sample showed symptoms of white spot and died in about 4 days. Two-thirds of the prawns inoculated with the WSSV master sample that was passed once through the system developed WSSV symptoms and were polymerase chain reaction (PCR) positive. However, no symptoms were observed and prawns were PCR negative when the WSSV master sample was passed three times through the system. Based on these results, we purpose that a low-voltage pulsed electric field system will serve as an efficient pond drainage sterilization system and will replace conventional treatments using chemicals such as sodium hypochlorite.展开更多
The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution netw...The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution networks can increase the accommodation of PVs and EVs and mitigate mutilple pow er quality problems by the flexible power regulation capability of voltage source converters.This paper proposes schemes to es tablish hybrid AC/DC LVDNs considering the conversion of the existing three-phase four-wire low-voltage AC systems to DC op eration.The characteristics and DC conversion constraints of typical LVDNs are analyzed.In addition,converter configura tions for typical LVDNs are proposed based on the three-phase four-wire characteristics and quantitative analysis of various DC configurations.Moreover,an optimal planning method of hybrid AC/DC LVDNs is proposed,which is modeled as a bi-level programming model considering the annual investments and three-phase unbalance.Simulations are conducted to verify the effectiveness of the proposed optimal planning method.Sim ulation results show that the proposed optimal planning method can increase the integration of PVs while simultaneously reduc ing issues related to voltage violation and unbalance.展开更多
A low-voltage ride-through(LVRT)control strategy for the multi-port power electronic transformer(PET)based on power co-regulation is proposed.During the sag and recovery of the grid-side voltage of the medium-voltage ...A low-voltage ride-through(LVRT)control strategy for the multi-port power electronic transformer(PET)based on power co-regulation is proposed.During the sag and recovery of the grid-side voltage of the medium-voltage ac(MVac)port,the grid-connected active power of the low-voltage ac(LVac)port,rather than the power from external renewable energy sources(e.g.,photovoltaic(PV)),is adjusted quickly to rebalance the power flowing across all ports,thereby preventing overcurrent and overvoltage.Moreover,a power-coordinate-frame-based LVRT mode classification is designed,and a total of six LVRT modes are classified to meet the LVRT requirements in all power configuration scenarios of the PET.In this way,the PET is endowed with the LVRT capability in both power-generation and power-consumption states,which is significantly different from traditional power generation systems such as PV or wind power.Furthermore,by optimizing the active power regulation path during LVRT transition,the overcurrent problem caused by the grid-voltage sag-depth detection delay is overcome.Finally,the effectiveness of the proposed control scheme is verified by experiments on a hardware-in-the-loop platform.展开更多
Accurate information for consumer phase connectivity in a low-voltage distribution network(LVDN)is critical for the management of line losses and the quality of customer service.The wide application of smart meters pr...Accurate information for consumer phase connectivity in a low-voltage distribution network(LVDN)is critical for the management of line losses and the quality of customer service.The wide application of smart meters provides the data basis for the phase identification of LVDN.However,the measurement errors,poor communication,and data distortion have significant impacts on the accuracy of phase identification.In order to solve this problem,this paper proposes a phase identification method of LVDN based on stepwise regression(SR)method.First,a multiple linear regression model based on the principle of energy conservation is established for phase identification of LVDN.Second,the SR algorithm is used to identify the consumer phase connectivity.Third,by defining a significance correction factor,the results from the SR algorithm are updated to improve the accuracy of phase identification.Finally,an LVDN test system with 63 consumers is constructed based on the real load.The simulation results prove that the identification accuracy achieved by the proposed method is higher than other phase identification methods under the influence of various errors.展开更多
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金supported by the National Natural Science Foundation of China (52307239,52102300,52207234)the Natural Science Foundation of Hubei Province (2022CFB1003,2021CFA025)。
文摘Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金supported by the National Natural Science Foundation of China (Grant No. 61904110)。
文摘A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
文摘A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.
文摘Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.
文摘With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.
基金the National Natural Science Foundation of China(No.50375114)State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology(No.05-03)
文摘Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltage EMC varied linearly with the discharging voltage in the range investigated. But for ceramic powders, the discharging voltage has an optimal value. Under the value, the density increases as discharging voltage rises, but beyond the value the trend is reverse. The experimental results show that the density of the metal parts decreases gradually along press direction. And the density of the ceramic parts decreases with the advancement of the aspect ratio h/d (height/diameter). In addition, repetitive compaction can improve the density of both metal and ceramic parts and reduce the effects of aspect ratio on the density.
文摘Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.
基金The project supported by National Natural Science Foundation of China (No. 50477025)
文摘This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.
文摘Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance in low-voltage distribution system, and seriously affect the quality of power supply. A new type of the commutation system and an improved quantum genetic algorithm (IQGA) are proposed in the paper. At last, the rationality and the efficiency of the method are verified by a practical example.
文摘The low-voltage-electromagnetic forming was applied to powder compaction.A series of experiments was performed to compact aluminum,copper and tin powders in an indirect working way.Having compacted high-density powder parts successfully,the authors analyzed the effects of voltage,capacitance,friction,compaction times,powder size and other factors on the densities of compacted specimens.The experimental results show that lower voltage but larger capacitance are beneficial to increasing the density and homogeneity of the compacted specimens,if the loading velocity and discharging energy are suitable.The higher the voltage,the greater the percentage of energy consumed by friction.If the equipment energy is limited,the iterative compaction is an efficient way to manufacture homogeneous and high-density powder parts.
基金the Science & Technology research key project of MOE (No.10518)National Natural Science Foundation of China (Nos.50477025,50537050 and 50525722)
文摘This paper focuses on the simulation of the low-voltage arc with an opening contact. A controllable experiment setup with a rotating contact is designed to investigate the arc behaviour. Supported by the experiment, the phenomena of arc elongation and commutation in the case of rotating contact are simulated with the dynamic grid technique introduced. Under the given condition of the external magnetic field and the contact rotating velocity, the stagnation and rapid jump of two arc roots are observed by the calculated and experimental arc root displacement. The voltage of arc column can be divided into four phases and its sharp rising progress comes from the increase of the displacement difference between two arc roots in x direction.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175034,11335004,and 11405019)the Important National Science and Technology Specific Project of China(Grant No.2011 ZX 02403-001)
文摘Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.
文摘Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of the signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM communication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over low-voltage powerline using OFDM when the transmitted power is large enough.
文摘It is necessary to take measures against infectious diseases in the Southeast Asian prawn farming industry. In giant tiger prawn (Penaeus monodon) aquaculture, diseases caused by viruses such as white spot syndrome virus (WSSV) and bacteria such as Vibrio have become a menace. Appropriate treatments of prawn culture pond's waters are advocated for preventing and controlling pathogens. The purpose of this study was to conduct an antimicrobial water treatment using a low-voltage pulsed electric field sterilization. Here we prepared a mechanical low-voltage pulsed electric field system with copper wire coiling around a titanium ring. The viability of WSSV in seawater was examined by prawn infectivity experiments. We inoculated healthy prawns (approximately 10-15 g) with the WSSV master sample that passed 0-3 times through the system. WSSV infection in prawns decreased according to the number of passes through the system. Healthy prawns survived for〉 10 days without feeding, where as prawns inoculated with the WSSV master sample showed symptoms of white spot and died in about 4 days. Two-thirds of the prawns inoculated with the WSSV master sample that was passed once through the system developed WSSV symptoms and were polymerase chain reaction (PCR) positive. However, no symptoms were observed and prawns were PCR negative when the WSSV master sample was passed three times through the system. Based on these results, we purpose that a low-voltage pulsed electric field system will serve as an efficient pond drainage sterilization system and will replace conventional treatments using chemicals such as sodium hypochlorite.
基金supported by the National Key Research and Development Program of China(No.2019YFE0118400).
文摘The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution networks can increase the accommodation of PVs and EVs and mitigate mutilple pow er quality problems by the flexible power regulation capability of voltage source converters.This paper proposes schemes to es tablish hybrid AC/DC LVDNs considering the conversion of the existing three-phase four-wire low-voltage AC systems to DC op eration.The characteristics and DC conversion constraints of typical LVDNs are analyzed.In addition,converter configura tions for typical LVDNs are proposed based on the three-phase four-wire characteristics and quantitative analysis of various DC configurations.Moreover,an optimal planning method of hybrid AC/DC LVDNs is proposed,which is modeled as a bi-level programming model considering the annual investments and three-phase unbalance.Simulations are conducted to verify the effectiveness of the proposed optimal planning method.Sim ulation results show that the proposed optimal planning method can increase the integration of PVs while simultaneously reduc ing issues related to voltage violation and unbalance.
基金supported by the National Nature Science Foundation of China(Grant No.U2034201)the key project of Science and Technology Innovation Program of Army Engineering Uni-versity(Grant No.KYCQJQZL2119)。
文摘A low-voltage ride-through(LVRT)control strategy for the multi-port power electronic transformer(PET)based on power co-regulation is proposed.During the sag and recovery of the grid-side voltage of the medium-voltage ac(MVac)port,the grid-connected active power of the low-voltage ac(LVac)port,rather than the power from external renewable energy sources(e.g.,photovoltaic(PV)),is adjusted quickly to rebalance the power flowing across all ports,thereby preventing overcurrent and overvoltage.Moreover,a power-coordinate-frame-based LVRT mode classification is designed,and a total of six LVRT modes are classified to meet the LVRT requirements in all power configuration scenarios of the PET.In this way,the PET is endowed with the LVRT capability in both power-generation and power-consumption states,which is significantly different from traditional power generation systems such as PV or wind power.Furthermore,by optimizing the active power regulation path during LVRT transition,the overcurrent problem caused by the grid-voltage sag-depth detection delay is overcome.Finally,the effectiveness of the proposed control scheme is verified by experiments on a hardware-in-the-loop platform.
基金supported in part by the National Natural Science Foundation of China(No.52177085)Science and Technology Planning Project of Guangzhou(No.202102021208)。
文摘Accurate information for consumer phase connectivity in a low-voltage distribution network(LVDN)is critical for the management of line losses and the quality of customer service.The wide application of smart meters provides the data basis for the phase identification of LVDN.However,the measurement errors,poor communication,and data distortion have significant impacts on the accuracy of phase identification.In order to solve this problem,this paper proposes a phase identification method of LVDN based on stepwise regression(SR)method.First,a multiple linear regression model based on the principle of energy conservation is established for phase identification of LVDN.Second,the SR algorithm is used to identify the consumer phase connectivity.Third,by defining a significance correction factor,the results from the SR algorithm are updated to improve the accuracy of phase identification.Finally,an LVDN test system with 63 consumers is constructed based on the real load.The simulation results prove that the identification accuracy achieved by the proposed method is higher than other phase identification methods under the influence of various errors.