The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue re...Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue repair and remodeling.Dysregulation of autophagy is suspected in numerous diseases,including cancer,neurodegenerative diseases,digestive disorders,metabolic syndromes,and infectious and inflammatory diseases.If autophagy is disrupted,for example,this can have serious consequences and lead to chronic inflammation and tissue damage,as occurs in diseases such as Chron's disease and ulcerative colitis.On the other hand,the influence of autophagy on the development and progression of cancer is not clear.Autophagy can both suppress and promote the progression and metastasis of cancer at various stages.From inflammatory bowel diseases to gastrointestinal cancer,researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target.Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial.Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.展开更多
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in...Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.展开更多
A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection de...A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.展开更多
Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-di...Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulatio...A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.展开更多
The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable...The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.展开更多
The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque ...The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.展开更多
Objective:To investigate the prevalence of methicillin-resistant staphylococci(MRS)which is a potencial risk factor of transmission between animals and humans in different types of horses(harness racing-horses,breedin...Objective:To investigate the prevalence of methicillin-resistant staphylococci(MRS)which is a potencial risk factor of transmission between animals and humans in different types of horses(harness racing-horses,breeding mares and riding-horses)and to compare the antimicrobial resistance of the isolates.Methods:A total of 191 healthy horses,housed at different locations of the Campania Region(Italy),were included in the study.Nasal swab samples were collected from each nostril of the horses.The mecA gene was detected by a nested PCR technique.Antibiotic susceptibility was tested for each isolate.Results:MRS was isolated from nasal samples of 68/191(35.6%;95%CI:28.9%-42.9%)healthy horses.All isolates were coagulase-negative with the exception of two coagulase-positive MRS strains,identified as Staphylococcus aureus and Staphylococcus pseudintermedius.2/83(2.4%;95%,CI:0.4%-9.2%).Interestingly,both coagulase-positive MRS isolates were from harness racing-horses.These horses also presented a significantly higher positivity for MRS(53.3%;95%CI:40.1%-66.1%)than the breeding mares and riding-horses groups.Antibiotic susceptibility testing showed difference between isolates due to different origins except for an almost common high resistance to aminopenicillins,such as ampicillin and amoxicillin.Conclusions:It can be concluded that harness racing-horses may act as a significant reservoir of MRS as compared to breeding mares and riding-horses.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Pytho...With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.展开更多
Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltag...Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltage EMC varied linearly with the discharging voltage in the range investigated. But for ceramic powders, the discharging voltage has an optimal value. Under the value, the density increases as discharging voltage rises, but beyond the value the trend is reverse. The experimental results show that the density of the metal parts decreases gradually along press direction. And the density of the ceramic parts decreases with the advancement of the aspect ratio h/d (height/diameter). In addition, repetitive compaction can improve the density of both metal and ceramic parts and reduce the effects of aspect ratio on the density.展开更多
Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based tr...Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.展开更多
This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and...This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.展开更多
Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new eff...Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.展开更多
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
文摘Autophagy,a conserved cellular degradation process,is crucial for various cellular processes such as immune responses,inflammation,metabolic and oxidative stress adaptation,cell proliferation,development,and tissue repair and remodeling.Dysregulation of autophagy is suspected in numerous diseases,including cancer,neurodegenerative diseases,digestive disorders,metabolic syndromes,and infectious and inflammatory diseases.If autophagy is disrupted,for example,this can have serious consequences and lead to chronic inflammation and tissue damage,as occurs in diseases such as Chron's disease and ulcerative colitis.On the other hand,the influence of autophagy on the development and progression of cancer is not clear.Autophagy can both suppress and promote the progression and metastasis of cancer at various stages.From inflammatory bowel diseases to gastrointestinal cancer,researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target.Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial.Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
基金supported by the National Natural Science Foundation of China (52307239,52102300,52207234)the Natural Science Foundation of Hubei Province (2022CFB1003,2021CFA025)。
文摘Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.
基金supported by the National Natural Science Foundation of China (Grant No. 61904110)。
文摘A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175034,11335004,and 11405019)the Important National Science and Technology Specific Project of China(Grant No.2011 ZX 02403-001)
文摘Planar radio frequency inductively coupled plasmas(ICP) are employed for low-voltage ion implantation processes,with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional(2D) selfconsistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to-4000 V, due to the heating of the capacitive field caused by the bias power. The N+fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2-+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
文摘A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.
基金Supported by National Natural Science Foundation of China(Grant No.51275047)
文摘The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)
文摘The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.
基金Supported by Faculty of Veterinary Medicine.University of Naples"Federico II".Naples Italy
文摘Objective:To investigate the prevalence of methicillin-resistant staphylococci(MRS)which is a potencial risk factor of transmission between animals and humans in different types of horses(harness racing-horses,breeding mares and riding-horses)and to compare the antimicrobial resistance of the isolates.Methods:A total of 191 healthy horses,housed at different locations of the Campania Region(Italy),were included in the study.Nasal swab samples were collected from each nostril of the horses.The mecA gene was detected by a nested PCR technique.Antibiotic susceptibility was tested for each isolate.Results:MRS was isolated from nasal samples of 68/191(35.6%;95%CI:28.9%-42.9%)healthy horses.All isolates were coagulase-negative with the exception of two coagulase-positive MRS strains,identified as Staphylococcus aureus and Staphylococcus pseudintermedius.2/83(2.4%;95%,CI:0.4%-9.2%).Interestingly,both coagulase-positive MRS isolates were from harness racing-horses.These horses also presented a significantly higher positivity for MRS(53.3%;95%CI:40.1%-66.1%)than the breeding mares and riding-horses groups.Antibiotic susceptibility testing showed difference between isolates due to different origins except for an almost common high resistance to aminopenicillins,such as ampicillin and amoxicillin.Conclusions:It can be concluded that harness racing-horses may act as a significant reservoir of MRS as compared to breeding mares and riding-horses.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
文摘With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.
基金the National Natural Science Foundation of China(No.50375114)State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology(No.05-03)
文摘Low-voltage electromagnetic compaction (EMC) was used to compact metal powders (Cu) and ceramic powders (TiO2) in the indirect way. It was found that the density of the metal powder parts compacted by low-voltage EMC varied linearly with the discharging voltage in the range investigated. But for ceramic powders, the discharging voltage has an optimal value. Under the value, the density increases as discharging voltage rises, but beyond the value the trend is reverse. The experimental results show that the density of the metal parts decreases gradually along press direction. And the density of the ceramic parts decreases with the advancement of the aspect ratio h/d (height/diameter). In addition, repetitive compaction can improve the density of both metal and ceramic parts and reduce the effects of aspect ratio on the density.
文摘Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.
基金The project supported by National Natural Science Foundation of China (No. 50477025)
文摘This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.
文摘Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.