期刊文献+
共找到5,840篇文章
< 1 2 250 >
每页显示 20 50 100
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
1
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
Performance Assessment of a Real PV System Connected to a Low-Voltage Grid
2
作者 Gaber Magdy Mostafa Metwally +1 位作者 Adel A.Elbaset Esam Zaki 《Energy Engineering》 EI 2024年第1期13-26,共14页
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th... The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient. 展开更多
关键词 low-voltage grid photovoltaic(PV)system total harmonic distortion grid-connected PV system
下载PDF
Coordinated planning for flexible interconnection and energy storage system in low-voltage distribution networks to improve the accommodation capacity of photovoltaic 被引量:1
3
作者 Jiaguo Li Lu Zhang +1 位作者 Bo Zhang Wei Tang 《Global Energy Interconnection》 EI CSCD 2023年第6期700-713,共14页
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v... The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method. 展开更多
关键词 low-voltage distribution network Photovoltaic accommodation Flexible interconnection Energy storage system Bilevel programming
下载PDF
Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
4
作者 陈远康 周远良 +3 位作者 蒋杰 饶庭柯 廖武刚 刘俊杰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期514-518,共5页
A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection de... A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process. 展开更多
关键词 electrostatic discharge floating n-well low-voltage trigger silicon-controlled rectifier
下载PDF
Optimal Cooperative Secondary Control for Islanded DC Microgrids via a Fully Actuated Approach
5
作者 Yi Yu Guo-Ping Liu +1 位作者 Yi Huang Peng Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期405-417,共13页
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por... DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method. 展开更多
关键词 DC microgrids distributed control high-order fully actuated system approach linear quadratic regulator microgrid modeling secondary control
下载PDF
Research on the Stability Analysis Method of DC Microgrid Based on Bifurcation and Strobe Theory
6
作者 Wei Chen Nan Qiu Xusheng Yang 《Energy Engineering》 EI 2024年第4期987-1005,共19页
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model... During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method. 展开更多
关键词 DC microgrid BIFURCATION nonlinear dynamics stability analysis oscillation characteristics
下载PDF
A digital twin model-based approach to cost optimization of residential community microgrids
7
作者 Mariem Dellaly Sondes Skander-Mustapha Ilhem Slama-Belkhodja 《Global Energy Interconnection》 EI CSCD 2024年第1期82-93,共12页
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con... This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin. 展开更多
关键词 Energy management system(EMS) Cost optimization Digital twin Photovoltaic systems microgrid
下载PDF
Automatic SOC Equalization Strategy of Energy Storage Units with DC Microgrid Bus Voltage Support
8
作者 Jingjing Tian Shenglin Mo +1 位作者 Feng Zhao Xiaoqiang Chen 《Energy Engineering》 EI 2024年第2期439-459,共21页
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a... In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments. 展开更多
关键词 Automatic equalization independent DC microgrid improve droop control secondary control state of charge
下载PDF
Low-Voltage Analysis of Distribution Network Software Design and Application 被引量:2
9
作者 Mingqiu Du Yan Li +1 位作者 Chunfang Liu Tangjie Liang 《Energy and Power Engineering》 2017年第4期183-188,共6页
With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Pytho... With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness. 展开更多
关键词 low-voltage ANALYSIS DISTRIBUTION NETWORK PYTHON
下载PDF
A low-voltage and energy-efficient full adder cell based on carbon nanotube technology 被引量:1
10
作者 Keivan Navi Rabe'e Sharifi Rad +1 位作者 Mohammad Hossein Moaiyeri Amir Momeni 《Nano-Micro Letters》 SCIE EI CAS 2010年第2期114-120,共7页
Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based tr... Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT(Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET(Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP(Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages. 展开更多
关键词 CNFET low-voltage Full-Adder Minority-Function NANOTECHNOLOGY
下载PDF
Research of Three-Phase Unbalanced Treatment in Low-Voltage Distribution Network Based on New Commutation Switch 被引量:1
11
作者 Xue Liu Jun Jia Jian Wang 《World Journal of Engineering and Technology》 2019年第4期10-17,共8页
Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance i... Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance in low-voltage distribution system, and seriously affect the quality of power supply. A new type of the commutation system and an improved quantum genetic algorithm (IQGA) are proposed in the paper. At last, the rationality and the efficiency of the method are verified by a practical example. 展开更多
关键词 low-voltage DISTRIBUTION Network THREE-PHASE UNBALANCE COMMUTATION SWITCH IQGA
下载PDF
Federated double DQN based multi-energy microgrid energy management strategy considering carbon emissions 被引量:1
12
作者 Yanhong Yang Tengfei Ma +3 位作者 Haitao Li Yiran Liu Chenghong Tang Wei Pei 《Global Energy Interconnection》 EI CSCD 2023年第6期689-699,共11页
Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy man... Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy. 展开更多
关键词 Multi-energy microgrid Federated learning Improved double DQN Energy conversion
下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:1
13
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 microgrid demand response program cost reduction gray wolf optimization algorithm
下载PDF
Attack-resilient control for converter-based DC microgrids
14
作者 Sen Tan Juan C.Vasquez Josep M.Guerrero 《Global Energy Interconnection》 EI CSCD 2023年第6期751-757,共7页
In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.Howe... In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results. 展开更多
关键词 Cyber-attacks DC microgrids Resilient control
下载PDF
An adaptive control strategy for microgrid secondary frequency based on parameter identification
15
作者 Yong Shi Yin Cheng +1 位作者 Bao Xie Jianhui Su 《Global Energy Interconnection》 EI CSCD 2023年第5期592-600,共9页
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo... Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy. 展开更多
关键词 Adaptive control Genetic algorithm microgrid Online identification
下载PDF
Energy Management System with Power Offering Strategy for a Microgrid Integrated VPP
16
作者 Yeonwoo Lee 《Computers, Materials & Continua》 SCIE EI 2023年第4期2313-2329,共17页
In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is re... In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation. 展开更多
关键词 Artificial intelligence energy management system microgrid nature-inspired algorithm virtual power plant
下载PDF
Optimal Design of Grid-Connected Microgrid System for Cold Chain Logistics Centre in China
17
作者 Xinsheng Qin Xiaoling Wu 《Journal of Power and Energy Engineering》 2023年第12期64-81,共18页
The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil th... The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources. 展开更多
关键词 Solar Photovoltaic Wind Power ENERGY Cold Storage microgrid
下载PDF
Microgrid Optimal Scheduling
18
作者 Salem Al-Agtash Mohamad Al Hashem 《Smart Grid and Renewable Energy》 CAS 2023年第2期15-29,共15页
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni... This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity. 展开更多
关键词 microgrid Renewable Energy Optimal Scheduling Power Flow
下载PDF
Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization
19
作者 Xianjing Zhong Xianbo Sun Yuhan Wu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1599-1619,共21页
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi... To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost. 展开更多
关键词 Wind-solar microgrid hybrid energy storage optimization configuration double-layer optimization model IGWO
下载PDF
Research on Multi-Objective Optimization Model of Industrial Microgrid Considering Demand Response Technology and User Satisfaction
20
作者 Junhui Li Jinxin Zhong +3 位作者 Kailiang Wang Yu Luo Qian Han Jieren Tan 《Energy Engineering》 EI 2023年第4期869-884,共16页
In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering dema... In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering demand response technology and user satisfaction.This paper firstly sorts out the status quo of microgrid operation optimization,and determines themain requirements for user satisfaction considering three types of load characteristics,demand response technology,power consumption benefit loss,user balance power purchase price and wind power consumption evaluation indicators in the system.Secondly,the operation architecture of the windstorage industrialmicrogrid is designed,and themulti-objective optimizationmodel of the wind-storage industrial microgrid is established with the comprehensive operating cost and user satisfaction as the target variables,and the corresponding solution method is mentioned.Finally,a typical wind-storage industrial microgrid is selected for simulation analysis,and the results showthat,(1)Considering the demand response technology,the comprehensive operating cost of the wind-storage industrial microgrid per day is 5292.63 yuan,the user satisfaction index is 0.953,and the wind power consumption rate reaches 100%.(2)By setting four scenarios,it highlights that the grid-connected operation mode is superior to the off-grid operation mode.Considering the demand response technology,the load curve can be optimized,and the time-of-use electricity price can be fully used to coordinate the operation of each unit,which enhances the wind power consumption capacity.The compromise solution of the system comprehensive operating cost and user satisfaction under the confidence level of 0.95 is obtained,namely(5343.22,0.94).(3)The frontier curve shows that in the process of model solving,it is impossible to optimize any sub-objective by changing the control variables,which proves that there is a close relationship between the comprehensive operating cost of the system and the confidence level,which can provide effective guidance for the optimal operation of industrial microgrids. 展开更多
关键词 Wind storage industrial microgrid demand response user satisfaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部