A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control ...A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.展开更多
The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , faciliti...The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.展开更多
Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing pro...Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing problems with high dust concentrations in large operations involving complex processes and the high cost of traditional coating technology,a novel coating technology that ensures intrinsic safety by utilizing water pressure and wind pressure was developed.This new coating technology was designed to suction and spray,and the technical parameters of its spray performance was also studied.The experimental tests and evaluation indicated the optimum working range is 0.3–0.7 MPa of wind pressure,1.2–10.2 L/min of water quantity,and 1.0–3.5 m of spraying distance.Moreover,this novel coating technology was tested in the Dashuitou Coal Mine in Gansu Province of China.Compared with conventional counterparts,the proposed new technology is safe,efficient,and convenient to operate.During spraying,dust concentrations were kept at less than 10 mg/m3,and the average rebound ratio resilient rate of solid materials was below 13%.After spraying,the average leakage every 100 m was 4 m3/min,and the oxygen volume fraction in the adjacent goaf was approximately 4%,demonstrating excellent air leakage prevention.展开更多
Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and ...Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and coloring were researched. The nonmetal artworks attain vivid and ancient bronze effect by the surface deposition and surface coloring processing. By using this technology,the problems of difficulty-to-plating copper and difficulty-to-archaizing for the large outdoor sculptures and other artworks can be solved,and it has prospective application due to low investment.展开更多
Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superall...Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique(for making turbine disk) are proposed and studied.Subsequently, advanced technologies like electrode-induction-melting gas atomization(EIGA), and spark-plasma discharge spheroidization(SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming.展开更多
文摘A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.
文摘The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.
基金supported by the National Natural Science Foundation of China(Grant No.51704283)Natural Science Foundation of Jiangsu Province(BK20170277)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT_17R103)the Fundamental Research Funds for the Central Universities(2014XT02)。
文摘Air leakage in underground coal mines presents a serious hazard for coal production and the safety of miners.Coating technology is commonly used as an efficient means for preventing air leakage.To address existing problems with high dust concentrations in large operations involving complex processes and the high cost of traditional coating technology,a novel coating technology that ensures intrinsic safety by utilizing water pressure and wind pressure was developed.This new coating technology was designed to suction and spray,and the technical parameters of its spray performance was also studied.The experimental tests and evaluation indicated the optimum working range is 0.3–0.7 MPa of wind pressure,1.2–10.2 L/min of water quantity,and 1.0–3.5 m of spraying distance.Moreover,this novel coating technology was tested in the Dashuitou Coal Mine in Gansu Province of China.Compared with conventional counterparts,the proposed new technology is safe,efficient,and convenient to operate.During spraying,dust concentrations were kept at less than 10 mg/m3,and the average rebound ratio resilient rate of solid materials was below 13%.After spraying,the average leakage every 100 m was 4 m3/min,and the oxygen volume fraction in the adjacent goaf was approximately 4%,demonstrating excellent air leakage prevention.
基金Project (50675072) supported by the National Natural Science Foundation of ChinaProject (2006F3084) supported by the Youth Innovation Found of Fujian Province, ChinaProject (06BS104) supported by the Science Research Found of Huaqiao University
文摘Two different technologies,electro-brush plating and arc spraying,were employed to deposit copper film and brass coating on the surface of nonmetal artworks,respectively. The principles of the oxidizing corrosion and coloring were researched. The nonmetal artworks attain vivid and ancient bronze effect by the surface deposition and surface coloring processing. By using this technology,the problems of difficulty-to-plating copper and difficulty-to-archaizing for the large outdoor sculptures and other artworks can be solved,and it has prospective application due to low investment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50974016 and 50071014)
文摘Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique(for making turbine disk) are proposed and studied.Subsequently, advanced technologies like electrode-induction-melting gas atomization(EIGA), and spark-plasma discharge spheroidization(SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming.