Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted...Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted.The results showed that the rainstorm in Langfang area had better dynamic condition.By the influence of northeast cold vortex,cold vortex at high altitude cooperated with the surface wind speed convergence,which provided better dynamic condition for strong convective rainfall.Three boundary layer parameterization schemes all simulated surface wind speed convergence of rainstorm center.Simulation results of 24-h rainfall distribution showed that the simulation of YSU scheme was better than ACM2 and MYJ.The simulation results of flow field and temperature field also verified that YSU scheme was better than other schemes.展开更多
构建以新能源为主体的新型电力系统,对燃煤发电机组深度调峰和超低负荷运行提出了越来越严苛的要求,进而对汽轮机组低负荷安全运行提出了越来越严峻的挑战。采用数值模拟方法,基于低负荷工况下汽轮机末级运行性能的深入分析,着重研究探...构建以新能源为主体的新型电力系统,对燃煤发电机组深度调峰和超低负荷运行提出了越来越严苛的要求,进而对汽轮机组低负荷安全运行提出了越来越严峻的挑战。采用数值模拟方法,基于低负荷工况下汽轮机末级运行性能的深入分析,着重研究探索了不同解决方案在超低负荷工况下的工作机理与优化效果。研究发现,当机组从中低负荷下降到超低负荷时,末级叶片附近出现间隙涡、回流涡和分离涡等涡群,其范围随着负荷的减小逐渐扩大。低负荷工况降低机组背压和低压缸切缸运行是弱化汽轮机涡流、提高末级性能的有效途径,二者结合使用效果更佳。例如,在20%热耗率验收(THA)工况条件下,将背压从4.9 k Pa降低到2.5 k Pa,使得末级涡群影响范围明显减小,转子叶片转矩从–38 N·m增加到73N·m,末级运行性能明显改善。在10%THA工况下,采用降低背压和低压缸切缸相结合可使叶顶间隙涡完全消失,回流涡和分离涡的径向长度都减小50%以上;优化后的动叶转矩增加了约130 N·m,末级运行性能改善效果显著。展开更多
Based on the data of the National Climate Center of China and the NCEP of the United States, a heavy precipitation process in eastern China during July 26-29, 2022 was analyzed. The results show that: The precipitatio...Based on the data of the National Climate Center of China and the NCEP of the United States, a heavy precipitation process in eastern China during July 26-29, 2022 was analyzed. The results show that: The precipitation process was formed under the influence of the low level southwest jet stream at the edge of the subtropical high. The eastward development of the low vortex and trough and the continuous strengthening of the upper level jet stream, combined with the influence of topographic convergence, provided extremely favorable conditions for the occurrence of the rainstorm.展开更多
文摘Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted.The results showed that the rainstorm in Langfang area had better dynamic condition.By the influence of northeast cold vortex,cold vortex at high altitude cooperated with the surface wind speed convergence,which provided better dynamic condition for strong convective rainfall.Three boundary layer parameterization schemes all simulated surface wind speed convergence of rainstorm center.Simulation results of 24-h rainfall distribution showed that the simulation of YSU scheme was better than ACM2 and MYJ.The simulation results of flow field and temperature field also verified that YSU scheme was better than other schemes.
文摘构建以新能源为主体的新型电力系统,对燃煤发电机组深度调峰和超低负荷运行提出了越来越严苛的要求,进而对汽轮机组低负荷安全运行提出了越来越严峻的挑战。采用数值模拟方法,基于低负荷工况下汽轮机末级运行性能的深入分析,着重研究探索了不同解决方案在超低负荷工况下的工作机理与优化效果。研究发现,当机组从中低负荷下降到超低负荷时,末级叶片附近出现间隙涡、回流涡和分离涡等涡群,其范围随着负荷的减小逐渐扩大。低负荷工况降低机组背压和低压缸切缸运行是弱化汽轮机涡流、提高末级性能的有效途径,二者结合使用效果更佳。例如,在20%热耗率验收(THA)工况条件下,将背压从4.9 k Pa降低到2.5 k Pa,使得末级涡群影响范围明显减小,转子叶片转矩从–38 N·m增加到73N·m,末级运行性能明显改善。在10%THA工况下,采用降低背压和低压缸切缸相结合可使叶顶间隙涡完全消失,回流涡和分离涡的径向长度都减小50%以上;优化后的动叶转矩增加了约130 N·m,末级运行性能改善效果显著。
文摘Based on the data of the National Climate Center of China and the NCEP of the United States, a heavy precipitation process in eastern China during July 26-29, 2022 was analyzed. The results show that: The precipitation process was formed under the influence of the low level southwest jet stream at the edge of the subtropical high. The eastward development of the low vortex and trough and the continuous strengthening of the upper level jet stream, combined with the influence of topographic convergence, provided extremely favorable conditions for the occurrence of the rainstorm.