期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins 被引量:4
1
作者 Xuezhi Duan Di Wang +4 位作者 Gang Qian John C.Walmsley Anders Holmen De Chen Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期309-315,共7页
K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the dire... K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction. 展开更多
关键词 Fischer–Tropsch synthesis Lower olefins Iron catalyst Potassium promoter carbon nanotubes
下载PDF
A Lower Ordovician Carbonate Contourite Drift on the Margin of the South China Paleocontinent at Jiuxi,Northern Hunan
2
作者 Duan Taizhong Guo Jianhua +2 位作者 Gao Zhenzhong Li Zenghua Zeng Yunfu Jianghan Petroleum Institute, Shashi, Hubei Chengdu College of Geology, Sichuan Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第4期393-407,465-466,共17页
Carbonate contourite drift at Jiuxi. Taoyuan, northern Hunan, was developed in a deepwater area ofnorthern Hunan on the margin of the Early Ordovician South China palcocontinent. The Lower Ordoviciansequence in the ar... Carbonate contourite drift at Jiuxi. Taoyuan, northern Hunan, was developed in a deepwater area ofnorthern Hunan on the margin of the Early Ordovician South China palcocontinent. The Lower Ordoviciansequence in the area is more than 350 m thick and contains well-developed contourites that can be groupedinto the following five types: the calcilutitic, the arenitic, the siltitic. the fine ruditic and the bioclastic. Thefirst three often constitute a complete or incomplete contourite succession. The arenitic contourite is nearlyuniformly distributed as interlayers throughout the succession, creating a monotonously rhythmic texture inthe contourite drift. The pattern of spatial distribution of the succession shows that the contourite drift is ahuge ridge-like sedimentary body extending along the trend of paleoslope. Numerous marks of flow direc-tion have pointed to an eastward paleoflow direction along the slope. 展开更多
关键词 A Lower Ordovician carbonate Contourite Drift on the Margin of the South China Paleocontinent at Jiuxi Northern Hunan
下载PDF
Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation 被引量:2
3
作者 ZHAO Wenzhi ZHU Rukai +2 位作者 HU Suyun HOU Lianhua WU Songtao 《Petroleum Exploration and Development》 2020年第6期1160-1171,共12页
The differences in organic matter abundance and rock composition between shale and mudstone determine the discrepancy of their contributions to the formation of conventional and shale oil/gas reservoirs.The evaluation... The differences in organic matter abundance and rock composition between shale and mudstone determine the discrepancy of their contributions to the formation of conventional and shale oil/gas reservoirs.The evaluation criteria of source rocks are different in the future exploration in self-sourced petroleum systems.Shales are deposited in deep/semi-deep lacustrine,with low sedimentation rate and chemical depositions of various degrees,while mudstones are mostly formed in shallow lacustrine/lakeside,with high deposition rate and density flow characteristics.Three factors contribute to the enrichment of organic matter in shales,including the"fertility effect"caused by volcanic ash deposition and hydrothermal injection,excessive and over-speed growth of organisms promoted by radioactive materials,and deep-water anaerobic environment and low sedimentation rate to protect the accumulation of organic matter from dilution.Lamellations in shales are easy to be stripped into storage space,and acid water produced during hydrocarbon generation can dissolve some particles to generate new pores.The massive mudstones with high clay content are of poor matrix porosity.Shales with high total organic carbon,developed laminations,relatively good reservoir property,and high brittle mineral content,are the most favorable lithofacies for shale oil exploration and development.It is necessary to conduct investigation on the differences between shale and mudstone reservoirs,to identify resources distribution in shale and mudstone formations,determine the type and standard of"sweet-spot"evaluation parameters,optimize"sweet-spot areas/sections",and adopt effective development technologies,which is of great significance to objectively evaluate the total amount and economy of shale oil resources,as well as the scale of effective exploitation. 展开更多
关键词 SHALES MUDSTONES lower limit of total organic carbon rock fabric accumulation contribution difference lacustrine shale oil sweet-spotting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部