期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Synergistic Effect between Nano-ceramic Lubricating Additives and Electroless Deposited Ni-W-P Coating 被引量:2
1
作者 CHEN Min CHENG Wushan +1 位作者 ZHAO Zuxin HUANG Xiaobo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期114-120,共7页
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electr... The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field. 展开更多
关键词 Ni-W-P alloy coating nano-ceramic lubricating additives friction-wear mechanism synergistic effect
下载PDF
The Effect and Mechanism of Nano-Cu Lubricating Additives on the Electroless Deposited Ni-W-P Coating
2
作者 陈敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期815-820,共6页
The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath comp... The coating and deposition process with excellent anti wear and suitable for industrial application were developed, and the optimum bath composition and process were obtained by studying the influence of the bath composition, temperature and pH value on the deposition rate and the plating solution stability. Moreover, the tribological properties of nano-Cu lubricating additives and electroless deposited Ni-W-P coating as well as their synergistic effect are researched using ring-block abrasion testing machine and energy dispersive spectrometer. Research results show that Ni-W-P alloy coating and nano-Cu lubricating additive have excellent synergistic effect, e g, the wear resistance of Ni-W-P alloy coating (with heat treatment and the oil with nano-Cu additives) has increased hundreds times than 45 steel as the metal substrate with the basic oil, and zero wear is achieved, which breaks through the bottleneck of previous separate research of the above-mentioned two aspects. 展开更多
关键词 Ni-W-P alloy coating nano Cu lubricating additives friction-Wear mechanism synergistic effect
下载PDF
Identification of Lubricating Oil Additives Using XGBoost and Ant Colony Optimization Algorithms
3
作者 Xia Yanqiu Cui Jinwei +2 位作者 Xie Peiyuan Zou Shaode Feng Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期158-167,共10页
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co... To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。 展开更多
关键词 lubricant oil additives fourier transform infrared spectroscopy type identification ACO-XGBoost combinatorial algorithm
下载PDF
Modified graphene as novel lubricating additive with high dispersion stability in oil 被引量:13
4
作者 Pu WU Xinchun CHEN +3 位作者 Chenhui ZHANG Jiping ZHANG Jianbin LUO Jiyang ZHANG 《Friction》 SCIE EI CAS CSCD 2021年第1期143-154,共12页
Graphene is a promising material as a lubricant additive for reducing friction and wear.Here,a dispersing method which combines chemical modification of graphene by octadecylamine and dicyclohexylcarbodiimide with a k... Graphene is a promising material as a lubricant additive for reducing friction and wear.Here,a dispersing method which combines chemical modification of graphene by octadecylamine and dicyclohexylcarbodiimide with a kind of effective dispersant has been successfully developed to achieve the remarkable dispersion stability of graphene in base oil.The stable dispersion time of modified graphene(0.5 wt%)with dispersant(1 wt%)in PAO-6 could be up to about 120 days,which was the longest time reported so far.At the same time,the lubricant exhibits a significant improvement of tribological performance for a steel ball to plate tribo-system with a normal load of 2 N.The coefficient of friction between sliding surfaces was~0.10 and the depth of wear track on plate was~21 nm,which decreased by about 44%and 90%when compared to pure PAO-6,respectively.Furthermore,the analysis of the lubricating mechanisms in regard to the sliding-induced formation of nanostructured tribo-film has been contacted by using Raman spectra and TEM. 展开更多
关键词 modified graphene dispersity lubricant additives tribo-film
原文传递
Multifunctional Lubricant Additive Improves Lubrication and Antioxidation Properties of Tung Oil
5
作者 Na Yao Haiyang Ding +3 位作者 Mei Li Shouhai Li Lina Xu Xiaohua Yang 《Journal of Renewable Materials》 EI 2023年第7期3115-3128,共14页
It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herei... It is of considerable significance to develop efficient and environmentally friendly machinery lubricant additives because of the increasing depletion of petrochemical resources and severe environmental problems.Herein,we proposed a facile strategy to synthesize a multifunctional vegetable oil-based lubricant via the lignin derivative vanillin coupled to amine and diethyl phosphite to produce a lubricating additive with both extreme pressure and antioxidant properties.Compared with pure tung oil,the lubricating and antioxidant performance of tung oil is significantly improved after adding additives.Adding the 1.0 wt%additive to the tung oil reduced the friction wear coefficient and the volume,and the oxidation induction time was much longer than pure tung oil. 展开更多
关键词 Tung oil lubricant additives ANTIOXIDATION MULTIFUNCTION
下载PDF
Tribological behaviors of graphene oxide partly substituted with nano-SiO_(2) as lubricant additives in water for magnesium alloy/steel interfaces 被引量:3
6
作者 Hongmei Xie Jiahong Dai Dan Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1425-1434,共10页
Although graphene oxide(GO)has emerged as an excellent lubricant additive in water,there remain great challenges in their practical application due to high production costs.By taking into account the low cost and also... Although graphene oxide(GO)has emerged as an excellent lubricant additive in water,there remain great challenges in their practical application due to high production costs.By taking into account the low cost and also its excellent tribological properties,it is likely that nano-SiO_(2)can be used as a lubricant additive to partially replace GO.Hence,this paper aims to explore the tribological properties of nano-SiO_(2)incorporated in GO nanofluids for partial GO replacement by investigating the friction coefficient and wear volume of the prepared SiO_(2)/GO hybrid nanofluids for magnesium alloy/steel sliding pairs.The experiments reveal that the SiO_(2)/GO hybrids retain low friction coefficients as compared to individual GO or SiO_(2)at all test conditions in this study.However,as for the bearing capacity test,all samples can provide a low wear volume under the loads of 1 and 3 N.With the increase of the normal load,there is considerable differences in the anti-wear behavior.Compared with that of individual GO nanofluids,the wear volume of the GO/SiO_(2)(mass ratio of 0.3:0.2)hybrid nanofluids was reduced by50.5%at 5 N and by 49.2%at 8 N.Furthermore,the wear volume of the GO/SiO_(2)(mass ratio of 0.3:0.2)hybrid nanofluids was reduced by46.3%under the rigorous conditions,as compared to individual GO nanofluids.The findings provide new insights into developing carbon nanomaterial-based hybrid nanofluids for magnesium alloy formation. 展开更多
关键词 magnesium alloy graphene oxide and nano-silicon dioxide water-based lubricant additive tribological characteristics
下载PDF
Tribological Properties of Few-layer Graphene Oxide Sheets as Oil-Based Lubricant Additives 被引量:10
7
作者 CHEN Zhe LIU Yuhong LUO Jianbin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期439-444,共6页
The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new gener... The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide(GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction(COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication. 展开更多
关键词 tribological properties graphene oxide sheets lubricant additive hydrocarbon base oil
下载PDF
Scalable preparation of functionalized graphite nanoplatelets via magnetic grinding as lubricity-enhanced additive
8
作者 季海滨 何志伟 +1 位作者 宋沙沙 赵增典 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2800-2808,共9页
Graphite nanoplatelets were prepared by a novel magnetic-grinding method using self-made equipments. Under a variant magnetic field, magnetic needles collided at a high rotating speed and exfoliated pristine graphite ... Graphite nanoplatelets were prepared by a novel magnetic-grinding method using self-made equipments. Under a variant magnetic field, magnetic needles collided at a high rotating speed and exfoliated pristine graphite into graphite nanoplatelets with high efficiency. The obtained graphite nanoplatelets are highly crystalline, and the thickness is less than 10 nm. Moreover, the surface area could reached 738.1 m^2/g with a grinding time of 4 h. Silanized graphite nanoplatelets can disperse well in SG 15W-40 engine oil and serve as lubricant additive. Tribological results indicate that the friction coefficient and wear-scar of the friction pairs are lower than 76% and 41%, respectively, by adding 1.5‰(mass fraction) of silanized graphite nanoplatelets. Notably, the functionalized graphite nanoplatelets can realize large-scale production and commercial application. 展开更多
关键词 magnetic grinding graphite nanoplatelets SILANIZATION lubricant additives
下载PDF
Design of wear-out-failure in-situ repair parts by environment-friendly nanocopper additive
9
作者 于鹤龙 徐滨士 +2 位作者 许一 王晓丽 刘谦 《Journal of Central South University》 SCIE EI CAS 2005年第S2期215-220,共6页
Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of... Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented. 展开更多
关键词 Cu nanoparticles lubricating oil additive tribological performance Cu protective film in-situ repair injection pump plunger and barrel
下载PDF
Study on Tribology Performance of Different Lubricant Additives under Atmospheric Pressure and High Vacuum Conditions
10
作者 Peng Qian Huang Zhiyang +2 位作者 Yang He Song Haiqing Zhang Jianrong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期81-91,共11页
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ... By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests. 展开更多
关键词 anti-wear additive high vacuum lubrication mechanism anti-wear properties friction reducing properties
下载PDF
Core-rim structured MXene@SiO_(2)composites as oil-based additives for enhanced tribological properties
11
作者 Yuhong CUI Shenghua XUE +4 位作者 Tiantian WANG Shujuan LIU Qian YE Feng ZHOU Weimin LIU 《Friction》 SCIE EI CAS CSCD 2024年第8期1728-1740,共13页
Herein,we have prepared SiO_(2)particles uploaded MXene nanosheets via in-situ hydrolysis of tetraetholothosilicate.Due to the large number of groups at the edges of MXene,SiO_(2)grows at the edges first,forming MXene... Herein,we have prepared SiO_(2)particles uploaded MXene nanosheets via in-situ hydrolysis of tetraetholothosilicate.Due to the large number of groups at the edges of MXene,SiO_(2)grows at the edges first,forming MXene@SiO_(2)composites with a unique core-rim structure.The tribological properties of MXene@SiO_(2)as lubricating additive in 500 SN are evaluated by SRV-5.The results show that MXene@SiO_(2)can reduce the friction coefficient of 500 SN from 0.572 to 0.108,the wear volume is reduced by 73.7%,and the load capacity is increased to 800 N.The superior lubricity of MXene@SiO_(2)is attributed to the synergistic effect of MXene and SiO_(2).The rolling friction caused by SiO_(2)not only improves the bearing capacity but also increases the interlayer distance of MXene,avoiding accumulation and making it more prone to interlayer slip.MXene@SiO_(2)is adsorbed on the friction interface to form a physical adsorption film and isolate the friction pair.In addition,the high temperature and high load induce the tribochemical reaction and form a chemical protection film during in the friction process.Ultimately,the presence of these protective films results in MXene@SiO_(2)having good lubricating properties. 展开更多
关键词 Ti3C2Tx MXene SiO_(2)nanoparticles lubricating additives protective film
原文传递
In-situ formation of nitrogen doped microporous carbon nanospheres derived from polystyrene as lubricant additives for anti-wear and friction reduction
12
作者 Yixin WANG Qi LU +4 位作者 Huijie XIE Shujuan LIU Qian YE Feng ZHOU Weimin LIU 《Friction》 SCIE EI CAS CSCD 2024年第3期439-451,共13页
This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres ... This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent,and then carbonization obtains N@MCNs.The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride.The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure.The results showed that N@MCNs exhibit superb reduction performance of friction and wear.When the addition of N@MCNs was 0.06 wt%,the friction coefficient of PAO-10 decreased from 0.188 to 0.105,and the wear volume reduced by 94.4%.The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%,respectively.The carrying capacity of load was rocketed from 100 to 400 N concurrently.Through the analysis of the lubrication mechanism,the result manifested that the prepared N@MCNs enter clearance of the friction pair,transform the sliding friction into the mixed friction of sliding and rolling,and repair the contact surface through the repair effect.Furthermore,the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides,which can avert direct contact with the matrix and improve the tribological properties.This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction.This preparing method can be ulteriorly expanded to multi-element co-permeable materials.Nitrogen and boron co-doped carbon nanospheres(B,N@MCNs)were prepared by mixed carbonization of N-enriched PS and boric acid,and exhibited high load carrying capacity and good tribological properties. 展开更多
关键词 lubricant additives hypercrosslinked polystyrene carbon nanospheres friction reduction ANTI-WEAR
原文传递
Research progresses of nanomaterials as lubricant additives
13
作者 Zhengquan JIANG Yankun SUN +8 位作者 Bokang LIU Laigui YU Yuping TONG Mingming YAN Zhongzheng YANG Yongxing HAO Linjian SHANGGUAN Shengmao ZHANG Weihua LI 《Friction》 SCIE EI CAS CSCD 2024年第7期1347-1391,共45页
Friction and wear are unavoidable in mechanical movement.The use of lubricants with nano-additives can effectively reduce friction and wear,which is of great significance to saving energy and protecting the environmen... Friction and wear are unavoidable in mechanical movement.The use of lubricants with nano-additives can effectively reduce friction and wear,which is of great significance to saving energy and protecting the environment.At present,great progress has been made in the scientific research and industrial application of nano-additives for lubricants.This paper mainly introduces the types of nano-additives for lubricants(such as carbon nanomaterials,nano-metals,nano-oxides,sulfides,complexes,polymers,etc.),the tribological properties of lubricants with different components of nano-additives,and the lubrication mechanisms of the nano-additives(including tribofilm formation,rolling ball bearing effect,repairing effect,polishing effect,and synergistic effect).It also deals with the dispersion of nano-additives in lubricants and the influences of their particle size and microstructure on the tribological properties of lubricants.This review outlines the performance requirements of nano-additives in different lubrication states,discusses the use of nano-additives in challenging working conditions,and identifies various industrial oil nano-additives with reference to the appropriate options in diverse working environments.Furthermore,the existing problems of nano-additives and their application prospects are summarized.This review,hopefully,would help to shed light on the design and synthesis of novel high-performance nano-additives and promote their application in engineering. 展开更多
关键词 NANOMATERIALS lubricant additive lubrication mechanism research progress
原文传递
A novel polyionic liquid with lubricity and viscosity-increasing dual functionalities as the additive in aqueous lubrication system
14
作者 Bo YU Kun ZOU +8 位作者 Rui WANG Qiang CHEN Rui DONG Xiao LIU Jiaying ZHANG Wenquan LV Qiangliang YU Meirong CAI Feng ZHOU 《Friction》 SCIE EI CAS CSCD 2024年第4期698-710,共13页
The polyionic liquid poly-PEGMA-r-METAC(PPM)with quaternary ammonium has been synthesized and evaluated as additive in aqueous lubricating fluids.The rheological behavior of aqueous lubricating fluids with PPM has bee... The polyionic liquid poly-PEGMA-r-METAC(PPM)with quaternary ammonium has been synthesized and evaluated as additive in aqueous lubricating fluids.The rheological behavior of aqueous lubricating fluids with PPM has been characterized to confirm PPM’s function as a viscosity modifier.The tribological behavior of aqueous lubricating fluids with PPM has been investigated on SRV-V and MTM testing machines.It was found that PPM has excellent viscosity-increasing,lubricating,and anti-wear properties as an additive for aqueous,which can be attributed to the ability of PPM to form the protective film and boundary tribofilm generated from complex tribochemical reaction on rubbing surface.The obtained PPM with dual functions of anti-corrosion additives and viscosity index improver can play an important role in diverse lubrication regimes. 展开更多
关键词 polyionic liquid lubricant additives viscosity modifier lubrication regime
原文传递
An inorganic–organic hybrid CQDs@PVP lubricant additive:Achieving low friction and wear in PEG and water
15
作者 Tao YANG Xiaozhen WANG +5 位作者 Huanchen LIU Qin ZHAO Kuiliang GONG Weimin LI Yongmin LIANG Xiaobo WANG 《Friction》 SCIE EI CAS CSCD 2024年第10期2281-2297,共17页
High-temperature lubrication has always been a hot topic in the lubricant and grease industry,and is also an essential concern in the high-end equipment sector to be addressed.Carbon quantum dots(CQDs)are an emerging ... High-temperature lubrication has always been a hot topic in the lubricant and grease industry,and is also an essential concern in the high-end equipment sector to be addressed.Carbon quantum dots(CQDs)are an emerging material widely applied in the field of lubrication,owing to their exceptional lubricity and high load-bearing capacity.However,the vulnerability of CQDs to oxidation in air and reduced stability dramatically restrict their high-temperature application capability.In this study,a nanocomposite of amphiphilic polyvinyl pyrrolidone(PVP)homopolymer with excellent lubricating properties and thermal stability,which is hydrogen bonded to CQDs(CQDs@PVP),was designed to achieve low friction and wear of lubricants at high temperatures.The CQDs@PVP are consistently dispersed in both PEG400 and water,and exhibit superior lubricity compared to unmodified CQDs at high temperatures(ranging from 200‒150°C and 90‒50°C).Meanwhile,the dense carbon film on the wear surface and the chemically reactive film of iron compounds directly contribute to the enhanced lubrication performance.These analytical results demonstrate the powerful candidacy of CQDs@PVP as a lubrication additive and promote future high-temperature applications of CQDs in industrial production. 展开更多
关键词 high temperature lubricants amphiphilic lubrication additives CQDs@PVP lubrication properties carbon film
原文传递
Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs 被引量:9
16
作者 Fenghua SU Guofu CHEN Ping HUANG 《Friction》 SCIE CSCD 2020年第1期47-57,共11页
Graphene oxide(GO)nanosheets and onion‐like carbon(OLC)nanoparticles were synthesized from natural graphite powder and candle soot,respectively,and characterized by transmission electron microscopy and Raman spectros... Graphene oxide(GO)nanosheets and onion‐like carbon(OLC)nanoparticles were synthesized from natural graphite powder and candle soot,respectively,and characterized by transmission electron microscopy and Raman spectroscopy.The lubricating performances of GO and OLC as lubricant additives in water were comparatively evaluated using a ball‐on‐disc tribometer.The effects of sand blasting of a steel disc on its morphology and tribological property were evaluated.The results show that the two nanomaterials,GO and OLC,when used as lubricant additives in water effectively reduce the friction and wear of the sliding discs,which is independent of the disc surface treatment.On applying heavy loads,it is observed that GO exhibits superior friction‐reducing and anti‐wear abilities compared to those of OLC—a trace amount of GO can achieve a lubricating ability equivalent to that of an abundant amount of OLC.Furthermore,it is observed that sand blasting cannot improve the wear resistance of the treated steel disc,even though the hardness of the disc increased after the treatment.The possible anti‐wear and friction‐reducing mechanisms of the GO and OLC as lubricant additives in water are discussed based on results for the wear surfaces obtained by scanning electron microscopy,Raman spectroscopy,and X‐ray photoelectron spectroscopy。 展开更多
关键词 graphene oxide onion‐like carbon lubricant additive friction and wear
原文传递
Preparation of Tungsten Film and Its Tribological Properties under Boundary Lubrication Conditions 被引量:6
17
作者 Li Xingliang Yue Wen +2 位作者 Wang Song Li Guolong Zhao Shiqian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期84-91,共8页
Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning elec... Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning electron microscopy(SEM) and nano-indentation tester. The tribological behavior of W film under lubrication by oil with ZDDP and MoDTC is evaluated by a SRV test machine. The tribo-film formed on the worn surfaces is investigated by X-ray photoelectron spectroscopy(XPS) to find out the tribological mechanisms between the W film and the two additional additives. The result shows that the W film lubricated by ZDDP and MoDTC-blended base oil has synergistic effects on the friction reduction property, while the anti-wear property is mainly caused by the hard surface of W film. 展开更多
关键词 IBAD W film lubricant additive tribological properties.
下载PDF
Experimental and Molecular Dynamics Simulations for Investigating the Effect of FattyAcid and Its Derivatives on Low Sulfur Diesel Lubricity 被引量:4
18
作者 Luo Hui Fan Weiyu +2 位作者 Li Yang Zhao Pinhui Nan Guozhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期79-85,共7页
In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricati... In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties. 展开更多
关键词 MD simulation ADSORPTION lubricity additive fatty acid low-sulfur diesel
下载PDF
Recent Advances in Colloidal Lubricant Detergents 被引量:3
19
作者 Wang Yonglei Eli Wumanjiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第4期7-12,共6页
Overbased lubricant detergents are important components in lubricating oil. Recently, a lot of papers about the synthesis mechanism, colloidal structure, acid neutralization and antifrictiorL properties of overbased d... Overbased lubricant detergents are important components in lubricating oil. Recently, a lot of papers about the synthesis mechanism, colloidal structure, acid neutralization and antifrictiorL properties of overbased detergents have been published with the development of experimental techniques, which can help us better understand the process of preparation and application of overbased detergents and propound new strategies for improving various performances of overbased detergents. In the future, the synthesis of environmentally friendly and multi-functional lubricant detergent using biodegradable vegetable oil instead of mineral oil as raw materials will be a primary objective for the colloidal lubricant detergent industry.This paper mainly presents the latest advances in the investigation of colloidal lubricant detergents. 展开更多
关键词 overbased detergents lubricant additives acid neutralization ANTIFRICTION BIODEGRADABLE
下载PDF
Microstructure and tribological behavior of the nickel-coated-graphitereinforced Babbitt metal composite fabricated via selective laser melting 被引量:1
20
作者 Xingke Zhao Xusheng Hai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期320-326,共7页
To improve the properties of Babbitt alloys,Ni-coated-graphite-reinforced Babbitt metal composite specimens were prepared via selective laser melting(SLM),and the composites microstructures,mechanical properties,and t... To improve the properties of Babbitt alloys,Ni-coated-graphite-reinforced Babbitt metal composite specimens were prepared via selective laser melting(SLM),and the composites microstructures,mechanical properties,and tribological properties were studied through scanning electron microscopy(SEM),shear testing,and dry-sliding wear testing,respectively.The results showed that most of the nickel-coated graphite(NCGr)particles were distributed at the boundaries of laser beads in the cross section of the SLM composite specimens.Microcracks and microvoids formed at the boundaries of laser beads where NCGr particles accumulated.Both the shear strength and the friction coefficient of the SLM composite specimens decreased with increasing NCGr content.The shear strength and the friction coefficient of the SLM composite sample with 6 wt%NCGr were approximately 20%and 33%lower than those of the NCGr-free sample,respectively.The friction mechanism changed from plastic shaping furrow to brittle cutting with increasing NCGr content.A practical Babbitt material with a lower friction coefficient and sufficient strength can be obtained by controlling the NCGr particle dispersion;this can be achieved by choosing NCGr particles with a thicker Ni layer and precisely controlling the laser energy input during the SLM process. 展开更多
关键词 sliding wear fracture metal matrix composite laser processing lubricant additives bearings
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部