Metal-organic frameworks(MOFs),comprised of metal ions/clusters and organic ligands,have shown promising potential for numerous applications.Recently,luminescent MOFs(LMOFs),with the superiorities of inherent crystall...Metal-organic frameworks(MOFs),comprised of metal ions/clusters and organic ligands,have shown promising potential for numerous applications.Recently,luminescent MOFs(LMOFs),with the superiorities of inherent crystallinity,definite structure,tunable pore,and multiple functionalizations,have bloomed out as sensors for the detection.Numerous LMOFs have been synthesized and used for sensing applications.Herein,the recent advances of LMOFs as chemical sensors for the detection of diverse targets,including metal ions,anions,small molecules,volatile organic compounds,nitro-aromatic explosives,gases,and biomolecules,have been summarized.Additionally,the detection mechanisms and the relationship between structure and properties of the materials are also illustrated.This review could be useful reference for the rational construction and sensing applications of LMOFs.展开更多
Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, lig...Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, ligands and guests. Nitro explosives have important influences tbr environmental protection and national homeland security, in this review, a brief description of luminescent MOFs is presented, accompanied by a short comment on the four types of metal-based luminescent MOFs as sensing materials for nitro explosives detection. Then the trends and challenges of luminescent MOFs as sensing materials ibr nitro explosives are also prospected.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
A metal-organic framework,Ce-FDM-50,was constructed by employing gallic acid featuring both carboxylate and pyrogallate as the coordinating sites and Ce(Ⅲ).The co-assembly of the carboxylates and pyrogallates with tw...A metal-organic framework,Ce-FDM-50,was constructed by employing gallic acid featuring both carboxylate and pyrogallate as the coordinating sites and Ce(Ⅲ).The co-assembly of the carboxylates and pyrogallates with two metal ions have achieved a new type of paddle wheel secondary building unit.These building units were further joined by organic struts to obtain frameworks in sql topology.This synthetic approach could be expanded to five different lanthanide metals(Nd,Eu,Gd,Tb,Yb)for the construction of a series of isoreticular MOFs based on FDM-50,and even MTV-MOFs in which mixed lanthanide metals with specific ratios were distributed.In addition,featuring the lanthanide metals as the inorganic nodes in the network,Tb-FDM-50 showed distinct luminescence properties that could be furtherly tuned for variable applications.展开更多
Two new d;metal-based metal-organic frameworks,{[Zn;(btc);(bib);(H;O);]·2H;O};(1)and{[Cd;(btc);(bib);(H;O);]·6H;O};(2)(btc=1,3,5-benzenetricarboxylate anion,bib=1,4-bis(1-imidazolyl)benzene...Two new d;metal-based metal-organic frameworks,{[Zn;(btc);(bib);(H;O);]·2H;O};(1)and{[Cd;(btc);(bib);(H;O);]·6H;O};(2)(btc=1,3,5-benzenetricarboxylate anion,bib=1,4-bis(1-imidazolyl)benzene)have been prepared under hydrothermal conditions by the reactions of d;metal oxides of ZnO and CdO with the aromatic polycarboxylic H;btc and the N-heterocyclic bib.The two products were characterized by single-crystal X-ray diffraction analysis,elemental analysis,thermogravimetric analysis(TGA),and IR spectroscopy.Complexes 1 and 2 crystallize in monoclinic C2/c and triclinic P 1 space groups,respectively.1 shows a 3D framework,and the potential large voids of the 3D network lead to a 3-fold interpenetrating architecture.2 displays a 2D framework,and the adjacent 2D layers expand into a 3D supramulecular network via rich hydrogen bonds.Moreover,the luminescent properties of the two complexes are investigated in solid state.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
A new Zn(Ⅱ) coordination polymer,namely {[Zn_(1.5)(1,3,5-btc^(3-))(dtb)(H_2O)](H_2O)_2}_n(1)(1,3,5-H_3btc = 1,3,5-benzenetricarboxylic acid,dtb = 1,3-di-(1,2,4-triazole-4-yl)benzene),has been hydr...A new Zn(Ⅱ) coordination polymer,namely {[Zn_(1.5)(1,3,5-btc^(3-))(dtb)(H_2O)](H_2O)_2}_n(1)(1,3,5-H_3btc = 1,3,5-benzenetricarboxylic acid,dtb = 1,3-di-(1,2,4-triazole-4-yl)benzene),has been hydrothermally synthesized and structurally characterized. X-ray single-crystal diffraction determination reveals that 1 crystallizes in the monoclinic C2/c space group with a = 33.811(12),b = 8.406(2),c = 17.296(4) ?,β = 120.593(2)°,V = 4232(2) ?~3,Z = 4,Mr = 1142.88,Dc = 1.794 Mg/m^3,μ = 1.783 mm^(-1),F(000) = 2320,the final R = 0.0338 and wR = 0.0827 for 3043 observed reflections with I 〉 2σ(I). Compound 1 exhibits 1D Zn(Ⅱ)-carboxylate chains,which are connected into a 3D porous framework with large channels by dtb,and then three identical 3D networks are interpenetrated with each other. In addition,the luminescence property of the complex has also been investigated.展开更多
Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) ha...Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) have been successfully synthesized based on the controllable self-assembly of 9-ethyl-3,6-diimidazolyl-carbazole(L),varied carboxylates and different metal ions under solvothermal conditions,which were characterized by single-crystal X-ray diffraction,elemental analysis,IR spectroscopy and thermogravimetry. Furthermore,luminescence and magnetic susceptibility of compound 2 are also investigated in detail. Single-crystal X-ray diffraction and topology analysis reveal that complexes 1~3 exhibit similar two-dimensional(2D) networks.展开更多
Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address ...Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.展开更多
Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-...Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-biglycine) under the same condition except for different pH values. Single-crystal X-ray determination shows that they are 3-D frameworks. Complex 1 crystallizes in monoclinic, space group P21/n. Complex 2 crystallizes in triclinic, space group Pi. The photoluminescence properties of those two complexes have been investigated in solid state. Complexes 2 exhibited remarkable blue luminescence emissions with high quantum yield of 40.3% On the other hand, complexes 1 featured weak quantum yields of 13.7%.展开更多
A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
基金financially supported by the National Natural Science Foundation of China (21531005, 21421001, 21905142, and 91856124)the Programme of Introducing Talents of Discipline to Universities (B18030)
文摘Metal-organic frameworks(MOFs),comprised of metal ions/clusters and organic ligands,have shown promising potential for numerous applications.Recently,luminescent MOFs(LMOFs),with the superiorities of inherent crystallinity,definite structure,tunable pore,and multiple functionalizations,have bloomed out as sensors for the detection.Numerous LMOFs have been synthesized and used for sensing applications.Herein,the recent advances of LMOFs as chemical sensors for the detection of diverse targets,including metal ions,anions,small molecules,volatile organic compounds,nitro-aromatic explosives,gases,and biomolecules,have been summarized.Additionally,the detection mechanisms and the relationship between structure and properties of the materials are also illustrated.This review could be useful reference for the rational construction and sensing applications of LMOFs.
基金supported by the National Natural Science Foundation of China (21301005)the Natural Science Foundation of Anhui Province (1408085QB31)the open fund of Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KFK201508)
文摘Metal-organic frameworks (MOFs) have been emerging as important multifunctional hybrid materials, not only due to the diversify framework architectures, but also contribute to the rich interactions among metals, ligands and guests. Nitro explosives have important influences tbr environmental protection and national homeland security, in this review, a brief description of luminescent MOFs is presented, accompanied by a short comment on the four types of metal-based luminescent MOFs as sensing materials for nitro explosives detection. Then the trends and challenges of luminescent MOFs as sensing materials ibr nitro explosives are also prospected.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金supported by the National Natural Science Foundation of China(Nos.21571037,21733003,21961132003)the National Key Research and Development Project of China(No.2018YFA0209400)National Top-Notch Talent Program,and the Science&Technology Commission of Shanghai Municipality(Nos.16520710100,17JC1400100)。
文摘A metal-organic framework,Ce-FDM-50,was constructed by employing gallic acid featuring both carboxylate and pyrogallate as the coordinating sites and Ce(Ⅲ).The co-assembly of the carboxylates and pyrogallates with two metal ions have achieved a new type of paddle wheel secondary building unit.These building units were further joined by organic struts to obtain frameworks in sql topology.This synthetic approach could be expanded to five different lanthanide metals(Nd,Eu,Gd,Tb,Yb)for the construction of a series of isoreticular MOFs based on FDM-50,and even MTV-MOFs in which mixed lanthanide metals with specific ratios were distributed.In addition,featuring the lanthanide metals as the inorganic nodes in the network,Tb-FDM-50 showed distinct luminescence properties that could be furtherly tuned for variable applications.
基金Supported by the National Natural Science Foundation of China(No.21373178,21663031 and 21503183)the Scientific Research Foundation of Shaanxi Provincial Education Department(No.16JK1857)the Natural Scientific Research Foundation of Yan’an City Technology Division of China(No.2016kg-01)
文摘Two new d;metal-based metal-organic frameworks,{[Zn;(btc);(bib);(H;O);]·2H;O};(1)and{[Cd;(btc);(bib);(H;O);]·6H;O};(2)(btc=1,3,5-benzenetricarboxylate anion,bib=1,4-bis(1-imidazolyl)benzene)have been prepared under hydrothermal conditions by the reactions of d;metal oxides of ZnO and CdO with the aromatic polycarboxylic H;btc and the N-heterocyclic bib.The two products were characterized by single-crystal X-ray diffraction analysis,elemental analysis,thermogravimetric analysis(TGA),and IR spectroscopy.Complexes 1 and 2 crystallize in monoclinic C2/c and triclinic P 1 space groups,respectively.1 shows a 3D framework,and the potential large voids of the 3D network lead to a 3-fold interpenetrating architecture.2 displays a 2D framework,and the adjacent 2D layers expand into a 3D supramulecular network via rich hydrogen bonds.Moreover,the luminescent properties of the two complexes are investigated in solid state.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金supported by the National Natural Science Foundation of China(21372112)the Science and Technology Research Projects of Education Department of Henan Province(15A150064)
文摘A new Zn(Ⅱ) coordination polymer,namely {[Zn_(1.5)(1,3,5-btc^(3-))(dtb)(H_2O)](H_2O)_2}_n(1)(1,3,5-H_3btc = 1,3,5-benzenetricarboxylic acid,dtb = 1,3-di-(1,2,4-triazole-4-yl)benzene),has been hydrothermally synthesized and structurally characterized. X-ray single-crystal diffraction determination reveals that 1 crystallizes in the monoclinic C2/c space group with a = 33.811(12),b = 8.406(2),c = 17.296(4) ?,β = 120.593(2)°,V = 4232(2) ?~3,Z = 4,Mr = 1142.88,Dc = 1.794 Mg/m^3,μ = 1.783 mm^(-1),F(000) = 2320,the final R = 0.0338 and wR = 0.0827 for 3043 observed reflections with I 〉 2σ(I). Compound 1 exhibits 1D Zn(Ⅱ)-carboxylate chains,which are connected into a 3D porous framework with large channels by dtb,and then three identical 3D networks are interpenetrated with each other. In addition,the luminescence property of the complex has also been investigated.
基金supported by the National Natural Science Foundation of China(21102117)Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province(CSPC2014-4-1)
文摘Three new metal-organic frameworks [Cd(L)(obba)]·H)2O(1),[Co(L)(obba)]·MeCN(2) and [Cd_2(L)_2(ip)_2]·6H_2O·DMF(3)(H_2obba = 4,4?-oxybisbenzoic acid,H2 ip = m-phthalic acid) have been successfully synthesized based on the controllable self-assembly of 9-ethyl-3,6-diimidazolyl-carbazole(L),varied carboxylates and different metal ions under solvothermal conditions,which were characterized by single-crystal X-ray diffraction,elemental analysis,IR spectroscopy and thermogravimetry. Furthermore,luminescence and magnetic susceptibility of compound 2 are also investigated in detail. Single-crystal X-ray diffraction and topology analysis reveal that complexes 1~3 exhibit similar two-dimensional(2D) networks.
基金supported by the National Natural Science Foundation of China(2127303621177024)+1 种基金the National Basic Research Program of China(973 Program2014CB239303)~~
文摘Environmental pollution and energy deficiency represent major problems for the sustainability of the modern world. Photocatalysis has recently emerged as an effective and environmentally friendly technique to address some of these sustainability issues,although the key to the success of this approach is dependent on the photocatalysts themselves. Based on their attractive physic chemical properties,including their ultrahigh surface areas,homogeneous active sites and tunable functionality,metal-organic frameworks(MOFs) have become interesting platforms for the development of solar energy conversion devices. Furthermore,MOFs have recently been used in a wide variety of applications,including heterogeneous photocatalysis for pollutant degradation,organic transformations,hydrogen production and CO2 reduction. In this review,we have highlighted recent progress towards the application of MOFs in all of these areas. We have collected numerous reported examples of the use of MOFs in these areas,as well as providing some analysis of the key factors influencing the efficiency of these systems. Moreover,we have provided a detailed discussion of new strategies that have been developed for enhancing the photocatalytic activity of MOFs. Finally,we have provided an outlook for this area in terms of the future challenges and potential prospects for MOFs in photocatalysis.
基金supported the National Ministry of Science and Technology of China(2012CB821702)the National Science Foundation of China(21073192,21203194 and 21233009)the Science Foundation of CAS and Fujian Province(KJCX2-YW-H20)
文摘Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-biglycine) under the same condition except for different pH values. Single-crystal X-ray determination shows that they are 3-D frameworks. Complex 1 crystallizes in monoclinic, space group P21/n. Complex 2 crystallizes in triclinic, space group Pi. The photoluminescence properties of those two complexes have been investigated in solid state. Complexes 2 exhibited remarkable blue luminescence emissions with high quantum yield of 40.3% On the other hand, complexes 1 featured weak quantum yields of 13.7%.
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.