开发新型有机红光材料对于制备高性能红光有机电致发光器件具有重要的研究意义。本文采用SUZUKI偶联反应,以芴酮为受体(A)、3,4,5-三甲氧基苯为给体(D)合成了新型D-π-A-π-D结构的有机红光材料(3MeFO)。通过1H NMR谱、13 C NMR谱和X单...开发新型有机红光材料对于制备高性能红光有机电致发光器件具有重要的研究意义。本文采用SUZUKI偶联反应,以芴酮为受体(A)、3,4,5-三甲氧基苯为给体(D)合成了新型D-π-A-π-D结构的有机红光材料(3MeFO)。通过1H NMR谱、13 C NMR谱和X单晶衍射确认了分子结构,该化合物展示了较强的电荷转移作用和良好的共轭结构,其晶体的发射峰达到620 nm。从单晶结构中看出甲氧基的引入有利于在分子间形成大量的氢键,有效地增强了分子间的相互作用。同时,该材料表现出良好的热稳定性能和电化学性能,使得其在OLED中展示了良好的电致发光性能。展开更多
Many large-scale and complex structural components are applied in the aeronautics and automobile industries.However,the repeated alternating or cyclic loads in service tend to cause unexpected fatigue fractures.Theref...Many large-scale and complex structural components are applied in the aeronautics and automobile industries.However,the repeated alternating or cyclic loads in service tend to cause unexpected fatigue fractures.Therefore,developing real-time and visible monitoring methods for fatigue crack initiation and propagation is critically important for structural safety.This paper proposes a machine learning-based fatigue crack growth detection method that combines computer vision and machine learning.In our model,computer vision is used for data creation,and the machine learning model is used for crack detection.Then computer vision is used for marking and analyzing the crack growth path and length.We apply seven models for the crack classification and find that the decision tree is the best model in this research.The experimental results prove the effectiveness of our method,and the crack length measurement accuracy achieved is 0.6 mm.Furthermore,the slight machine learning models help us realize real-time and visible fatigue crack detection.展开更多
Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores....Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores.Here a new concept of nonaromatic through-bond conjugation(TBC)is proposed and it is proved that it plays an important role in the PL of NTLs.The PL behaviors of the three respective isomers of cyclohexanedione and gemdimethyl-1,3-cyclohexanedione were studied and correlated with their chemical and aggregate structures.These compounds show differentfluorescence emissions as well as dif-ferent concentration,excitation and solvent-dependent emissions.The compounds which undergo keto-enol tautomerism and hence with a conjugated ketone-enol structure(i.e.,nonaromatic TBC)show more red-shifted emissions.TBC effect reduces the energy gaps and facilitates the formation of stronger TSC in the aggre-gate state.The compounds in the ketone-enol form are also prone to occur excited state intra/intermolecular proton transfer(ESIPT).The cooperative effect of nonaro-matic TBC and TSC determines the PL behaviors of NTLs.This work provides a novel understanding of the PL mechanisms of NTLs and is of great importance for directing the design and synthesis of novel NTLs.展开更多
Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatm...Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatment of tumors due to their remarkable chemo-physical performance in optoelectronic research.TPA-AIEgens are distinguished from other photoactive agents by their strong fluorescence,good sensitivity,high signal-to-noise ratio,resistance to photobleaching,and lack of high concentration or aggregation-caused fluoresce quenching effects.In this review,we summarize the current advancements and the biomedical progress of TPA-AIEgens in tumor theranostics.First,the design principles of TPAAIEgens photoactive agents as well as the advanced targeting strategies for nuclei,cell membranes,cell organelle and tumors were introduced,respectively.Next,the applications of TPA-AIEgens in tumor diagnosis and therapeutic techniques were reviewed.Last,the challenges and prospects of TPA-AIEgens for cancer therapy were performed.The given landscape of the TPA-AIEgens hereby is meaningful for the further design and utilization of the novel photoactive material,which could be beneficial for the development of clinic applications.展开更多
Aggregate-induced emission luminogens(AIEgens) have been widely used in biological imaging, chemical sensing, and disease treatments. The rational design and construction of AIEgens have received considerable research...Aggregate-induced emission luminogens(AIEgens) have been widely used in biological imaging, chemical sensing, and disease treatments. The rational design and construction of AIEgens have received considerable research interests during the last few years. Herein, molecular docking-aided AIEgen design has been reasonably proposed and AIEgen TBQZY with excellent ~1O_(2) generation ability has been synthesized. The newly developed TBQZY could efficiently kill S. epidermidis and methicillinresistant S. epidermidis(MRSE) by tightly binding to bacteria and triggering the accumulation of ~1O_(2) in bacteria. TBQZY specifically regulated the immune system and polarized macrophages from M1 to M2 to accelerate the elimination of biofilm in vivo. In addition, healing acceleration was observed in chronic wounds treated with TBQZY, and side effects were negligible.Meanwhile, TBQZY had extraordinary potential for combating drug-resistant bacteria in the clinical setting. This research not only provided new concepts for the design of AIEgens, but also shed some lights on the discovery of drugs against drug-resistant bacteria.展开更多
Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resis...Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resistant(MDR)bacteria has drastically diminished their potency.Since the invention of laser,the combination of light and photosensitizers,photodynamic therapy(PDT),has become an effective noninvasive treatment along with photothermal therapy(PTT),in which heat is generated by nonradiative relaxation.Antimicrobial PDT and PTT are emerging as effective treatments for bacterial infection,particularly against MDR bacteria.This mini review covers the recent progresses in PDT and PTT for bacterial treatment.展开更多
This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our...This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our group.Besides homocrystals,mixed crystals and cocrystals are also discussed.Meanwhile,intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.展开更多
Functional nucleic acids(FNAs)-based biosensors have shown great potential in heavy metal ions detection due to their low-cost and easy to operate merits. However, in most FNAs based fluorescence probes, the ingenious...Functional nucleic acids(FNAs)-based biosensors have shown great potential in heavy metal ions detection due to their low-cost and easy to operate merits. However, in most FNAs based fluorescence probes, the ingenious designs of double-labeled(fluorophore and quencher group) DNA sequence, not only bring the annoyance of organic synthesis, but also restrict its use as a robust biosensor in practical duties. In this paper, we design a simple AIEgens functional nucleic acids(AFNAs) probe which consists of only fluorogen but no quencher group. With the help of duplex-specific nuclease(DSN) enzyme based target recycling, high fluorescence signal and superior sensitivity towards Hg^(2+) are achieved. This robust assay allows for sensitive and selective detection of Hg^(2+) in real water samples and mapping of intracellular Hg^(2+), without double-labeling of oligonucleotide with a dye-quencher pair, nor the multiple assay steps.展开更多
Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluoresc...Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluorescence-phosphorescence dual emission at room temperature, however, is rarely observed in pure organic materials. Herein, we reported a metal-and heavy-atom free pure organic luminogen with tert-butyl groups, DtBuCZBP, which is ready to form organogels in dimethylsulfoxide(DMSO).It emits prompt and delayed fluorescence, as well as RTP, namely dual emission in as-prepared solid, gels and polymeric films.To the best of our knowledge, it is the first example of metal-and heavy-atom free pure organic gelator with RTP emission. Such unique RTP and moreover dual emission properties in different states make DtBuCZBP a potential material for diverse applications.展开更多
Luminogens that exhibit stimulus-responsive room temperature phosphorescence(RTP)have attracted significant attention for their applications in a wide range of fields such as data storage,sensors,and bio-imaging.Howev...Luminogens that exhibit stimulus-responsive room temperature phosphorescence(RTP)have attracted significant attention for their applications in a wide range of fields such as data storage,sensors,and bio-imaging.However,very few such materials are known,partly because of the unclear internal mechanism.In this review,we summarize recent advances in the field of stimulusresponsive RTP in purely organic luminogens,focusing on their unique emission behaviors and internal mechanisms governing the phenomena.We also attempt to identify the relationship between the mechanism,luminogens,and possible applications.展开更多
Molecular interactions are crucial in diverse fields of protein folding,material science,nanotechnology,and life origins.Although mounting experimental research controls luminescent behavior by adjusting molecular int...Molecular interactions are crucial in diverse fields of protein folding,material science,nanotechnology,and life origins.Although mounting experimental research controls luminescent behavior by adjusting molecular interactions in light-emitting materials,it remains elusive to correlate microscopic molecular interactions with macroscopic luminescent behavior directly.Here,we synthesized three red luminogens with subtle structural variation and investigated the influence of molecular interactions on their luminescent behavior in solution and aggregate states.Our results indicate that strongπ-πand D-A interactions in both dilute solution(between luminogen and solvent molecules)and aggregate(between luminogens)states cause the redshift in emission,while weak interactions(e.g.,Van der Waals,C–H…π,and C–H…F interactions)enhance the quantum yield.This work provides a thoughtful investigation into the complicated influence of various molecular interactions on luminescent behavior.展开更多
Aggregation-induced emission luminogens(AIEgens)exhibit efficient cytotoxic reactive oxygen species(ROS)generation capability and unique light-up features in the aggregated state,which have been well explored in image...Aggregation-induced emission luminogens(AIEgens)exhibit efficient cytotoxic reactive oxygen species(ROS)generation capability and unique light-up features in the aggregated state,which have been well explored in image-guided photodynamic therapy(PDT).However,the limited penetration depth of light in tissue severely hinders AIEgens as a candidate for primary or adjunctive therapy for clinical applications.Coincidentally,microwaves(MWs)show a distinct advantage for deeper penetration depth in tissues than light.Herein,for the first time,we report AIEgen-mediated microwave dynamic therapy(MWDT)for cancer treatment.We found that two AIEgens(TPEPy-I and TPEPy-PF6)served as a new type of microwave(MW)sensitizers to produce ROS,including singlet oxygen(1O2),resulting in efficient destructions of cancer cells.The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)and live/dead assays reveal that the two AIEgens when activated by MW irradiation can effectively kill cancer cells with average IC-50 values of 2.73 and 3.22μM,respectively.Overall,the ability of the two AIEgens to be activated by MW not only overcomes the limitations of conventional PDT,but also helps to improve existing MW ablation therapy by reducing the MW dose required to achieve the same therapeutic outcome,thus reducing the occurrence of side-effects of MW radiation.展开更多
Luminogens with aggregation-induced emission(AIEgens)have a wide range of biomedical applications in bioimaging,photodynamic anticancer,antibacterial therapy,and other fields,owing to their unique photophysical proper...Luminogens with aggregation-induced emission(AIEgens)have a wide range of biomedical applications in bioimaging,photodynamic anticancer,antibacterial therapy,and other fields,owing to their unique photophysical properties.The precise structural design and modification of AIE molecules have aroused great interest in the past years.As peptides-AIE hybrid materials,peptide-based AIEgens generally have better solubility,biocompatibility,and lower systemic toxicity.The functional diversity,modularity,and portability of peptides provide more possibilities for the intelligent structure and functional design of AIEgens.This review summarizes the recent research progress of peptide-based AIEgens nanomaterials,from molecular design,stimuli responsiveness to biomedical application,focusing on the advantages of peptides and AIE molecules as conjugates.Finally,a summary of the challenges and opportunities of peptide-based AIEgens nanomaterials for future clinical biomedical applications is presented.展开更多
Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified ...Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.展开更多
A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures,mainly focusing on DNA morphology mo...A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures,mainly focusing on DNA morphology modulation and multifunctional systems engineered into to the complicated works.Among the numerous detections,fluorescence method is a non-invasive,highly selective and sensitive means for varieties of applications,but their emissions are often compromised by the aggregation-caused quenching(ACQ)effect,which weakens their applications.The aggregation induced emission luminogens(AIEgens)are created with non emissive or weakly emissive in a low concentration but emit strong fluorescence in a high concentration with aggregated states.Herein,numerous functionalized AIEgens have been emerged and used for detection and imaging and DNA-modified AIEgen probes are introduced.In this vein,here we report the progress on DNA-modified AIEgen probes in recent years and highlight their conjugation strategies including covalent bonding,electrostatic interaction and their applications of biosensing.Moreover,multiple DNA strands are needed to introduce into the DNA-modified AIEgen probes for more purposes.At the end,some challenges are mentioned to discuss the new trend of DNA-modified AIEgen probes.展开更多
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ...Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.展开更多
文摘开发新型有机红光材料对于制备高性能红光有机电致发光器件具有重要的研究意义。本文采用SUZUKI偶联反应,以芴酮为受体(A)、3,4,5-三甲氧基苯为给体(D)合成了新型D-π-A-π-D结构的有机红光材料(3MeFO)。通过1H NMR谱、13 C NMR谱和X单晶衍射确认了分子结构,该化合物展示了较强的电荷转移作用和良好的共轭结构,其晶体的发射峰达到620 nm。从单晶结构中看出甲氧基的引入有利于在分子间形成大量的氢键,有效地增强了分子间的相互作用。同时,该材料表现出良好的热稳定性能和电化学性能,使得其在OLED中展示了良好的电致发光性能。
基金supported by the National Key Research and Development Program of China(2018YFC0808600)the National Natural Science Foundation of China(52075368,51605325,11772219)and JSPS KAKENHI(18K18337).
文摘Many large-scale and complex structural components are applied in the aeronautics and automobile industries.However,the repeated alternating or cyclic loads in service tend to cause unexpected fatigue fractures.Therefore,developing real-time and visible monitoring methods for fatigue crack initiation and propagation is critically important for structural safety.This paper proposes a machine learning-based fatigue crack growth detection method that combines computer vision and machine learning.In our model,computer vision is used for data creation,and the machine learning model is used for crack detection.Then computer vision is used for marking and analyzing the crack growth path and length.We apply seven models for the crack classification and find that the decision tree is the best model in this research.The experimental results prove the effectiveness of our method,and the crack length measurement accuracy achieved is 0.6 mm.Furthermore,the slight machine learning models help us realize real-time and visible fatigue crack detection.
基金Program for Changjiang Scholars and Innovative Research Team(PCSIRT)in UniversityNational Natural Science Foundation of China,Grant/Award Number:21574015。
文摘Photoluminescence(PL)mechanisms of nontraditional luminogens(NTLs)have attracted great interest,and they are generally explained with intra/intermolecular through-space conjugation(TSC)of nonconventional chromophores.Here a new concept of nonaromatic through-bond conjugation(TBC)is proposed and it is proved that it plays an important role in the PL of NTLs.The PL behaviors of the three respective isomers of cyclohexanedione and gemdimethyl-1,3-cyclohexanedione were studied and correlated with their chemical and aggregate structures.These compounds show differentfluorescence emissions as well as dif-ferent concentration,excitation and solvent-dependent emissions.The compounds which undergo keto-enol tautomerism and hence with a conjugated ketone-enol structure(i.e.,nonaromatic TBC)show more red-shifted emissions.TBC effect reduces the energy gaps and facilitates the formation of stronger TSC in the aggre-gate state.The compounds in the ketone-enol form are also prone to occur excited state intra/intermolecular proton transfer(ESIPT).The cooperative effect of nonaro-matic TBC and TSC determines the PL behaviors of NTLs.This work provides a novel understanding of the PL mechanisms of NTLs and is of great importance for directing the design and synthesis of novel NTLs.
基金funded by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.820LH027)the Hainan Provincial Natural Science Foundation of China(No.823RC472)+4 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF008)the Hainan University Scientific Research Foundation(No.KYQD(ZR)19107)Natural Science Research Talent Project of Hainan Medical University(No.JBGS202101)Hainan Province Clinical Medical Center(2021)Project for Functional Materials and Molecular Imaging Science Innovation Group of Hainan Medical University。
文摘Triphenylamine(TPA)-based aggregation-induced emission luminogens(TPA-AIEgens),a type of photoactive material utilizing the typical TPA moiety,has recently attracted increasing attention for the diagnostics and treatment of tumors due to their remarkable chemo-physical performance in optoelectronic research.TPA-AIEgens are distinguished from other photoactive agents by their strong fluorescence,good sensitivity,high signal-to-noise ratio,resistance to photobleaching,and lack of high concentration or aggregation-caused fluoresce quenching effects.In this review,we summarize the current advancements and the biomedical progress of TPA-AIEgens in tumor theranostics.First,the design principles of TPAAIEgens photoactive agents as well as the advanced targeting strategies for nuclei,cell membranes,cell organelle and tumors were introduced,respectively.Next,the applications of TPA-AIEgens in tumor diagnosis and therapeutic techniques were reviewed.Last,the challenges and prospects of TPA-AIEgens for cancer therapy were performed.The given landscape of the TPA-AIEgens hereby is meaningful for the further design and utilization of the novel photoactive material,which could be beneficial for the development of clinic applications.
基金supported by the start-up funding from Wuhan University (691000002, 600460026)Tai Kang Center for Life and Medical Sciences (692000007)Wuhan University large instrument and equipment open subsidies。
文摘Aggregate-induced emission luminogens(AIEgens) have been widely used in biological imaging, chemical sensing, and disease treatments. The rational design and construction of AIEgens have received considerable research interests during the last few years. Herein, molecular docking-aided AIEgen design has been reasonably proposed and AIEgen TBQZY with excellent ~1O_(2) generation ability has been synthesized. The newly developed TBQZY could efficiently kill S. epidermidis and methicillinresistant S. epidermidis(MRSE) by tightly binding to bacteria and triggering the accumulation of ~1O_(2) in bacteria. TBQZY specifically regulated the immune system and polarized macrophages from M1 to M2 to accelerate the elimination of biofilm in vivo. In addition, healing acceleration was observed in chronic wounds treated with TBQZY, and side effects were negligible.Meanwhile, TBQZY had extraordinary potential for combating drug-resistant bacteria in the clinical setting. This research not only provided new concepts for the design of AIEgens, but also shed some lights on the discovery of drugs against drug-resistant bacteria.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2022R1A2C3005420).
文摘Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resistant(MDR)bacteria has drastically diminished their potency.Since the invention of laser,the combination of light and photosensitizers,photodynamic therapy(PDT),has become an effective noninvasive treatment along with photothermal therapy(PTT),in which heat is generated by nonradiative relaxation.Antimicrobial PDT and PTT are emerging as effective treatments for bacterial infection,particularly against MDR bacteria.This mini review covers the recent progresses in PDT and PTT for bacterial treatment.
基金financially supported by the National Natural Science Foundation of China(No.51473092)the Shanghai Rising-Star Program(No.15QA1402500)the SMC-Chenxing Young Scholar Program of Shanghai Jiao Tong University
文摘This review summarizes the recent progress of efficient room temperature phosphorescence(RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence(CIP),with focus on the advances in our group.Besides homocrystals,mixed crystals and cocrystals are also discussed.Meanwhile,intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.
基金supported by the National Natural Science Foundation of China(21525523,21574048,21375042,21405054)the National Basic Research Program of China(2015CB932600,2013CB933000)+1 种基金the Special Fund for Strategic New Indus-try Development of Shenzhen,China(JCYJ20150616144425376)1000 Young Talent(to Fan Xia)
文摘Functional nucleic acids(FNAs)-based biosensors have shown great potential in heavy metal ions detection due to their low-cost and easy to operate merits. However, in most FNAs based fluorescence probes, the ingenious designs of double-labeled(fluorophore and quencher group) DNA sequence, not only bring the annoyance of organic synthesis, but also restrict its use as a robust biosensor in practical duties. In this paper, we design a simple AIEgens functional nucleic acids(AFNAs) probe which consists of only fluorogen but no quencher group. With the help of duplex-specific nuclease(DSN) enzyme based target recycling, high fluorescence signal and superior sensitivity towards Hg^(2+) are achieved. This robust assay allows for sensitive and selective detection of Hg^(2+) in real water samples and mapping of intracellular Hg^(2+), without double-labeling of oligonucleotide with a dye-quencher pair, nor the multiple assay steps.
基金supported by the National Natural Science Foundation of China (51473092)the Shanghai Rising-Star Program (15QA1402500)
文摘Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluorescence-phosphorescence dual emission at room temperature, however, is rarely observed in pure organic materials. Herein, we reported a metal-and heavy-atom free pure organic luminogen with tert-butyl groups, DtBuCZBP, which is ready to form organogels in dimethylsulfoxide(DMSO).It emits prompt and delayed fluorescence, as well as RTP, namely dual emission in as-prepared solid, gels and polymeric films.To the best of our knowledge, it is the first example of metal-and heavy-atom free pure organic gelator with RTP emission. Such unique RTP and moreover dual emission properties in different states make DtBuCZBP a potential material for diverse applications.
基金the starting Grants of Tianjin University,Grant/Award Number:001Natural Science Foundation of Tianjin City+3 种基金National Natural Science Foundation of ChinaTianjin Universitythe starting Grants of Tianjin University and Tianjin Government,National Natural Science Foundation of China(No.51903188)Natural Science Foundation of Tianjin City(No.19JCQNJC04500)for financial support.
文摘Luminogens that exhibit stimulus-responsive room temperature phosphorescence(RTP)have attracted significant attention for their applications in a wide range of fields such as data storage,sensors,and bio-imaging.However,very few such materials are known,partly because of the unclear internal mechanism.In this review,we summarize recent advances in the field of stimulusresponsive RTP in purely organic luminogens,focusing on their unique emission behaviors and internal mechanisms governing the phenomena.We also attempt to identify the relationship between the mechanism,luminogens,and possible applications.
基金supported by the National Natural Science Foundation of China(21788102,52003228)the Innovation and Technology Commission(ITC-CNERC14SC01)+1 种基金the Research Grants Council of Hong Kong(16307020,C6009-17G,C6014-20W,and N-HKUST609/19)the Natural Science Foundation of Guangdong Province(2019B121205012)。
文摘Molecular interactions are crucial in diverse fields of protein folding,material science,nanotechnology,and life origins.Although mounting experimental research controls luminescent behavior by adjusting molecular interactions in light-emitting materials,it remains elusive to correlate microscopic molecular interactions with macroscopic luminescent behavior directly.Here,we synthesized three red luminogens with subtle structural variation and investigated the influence of molecular interactions on their luminescent behavior in solution and aggregate states.Our results indicate that strongπ-πand D-A interactions in both dilute solution(between luminogen and solvent molecules)and aggregate(between luminogens)states cause the redshift in emission,while weak interactions(e.g.,Van der Waals,C–H…π,and C–H…F interactions)enhance the quantum yield.This work provides a thoughtful investigation into the complicated influence of various molecular interactions on luminescent behavior.
基金We would like to acknowledge the supports from Guangxi Jialouyuan Medical Inc.,Solgro,and the distinguished award from UT Arlington,the Pencis award,as well as the supports from the China Scholarship Council(201906155012)the National Natural Science Foundation of China(22071065,21772045)+2 种基金the Natural Science Foundation of Guangdong Province(2018B030311008)and the Technology Program of Guangzhou(201904010414)e would also like to acknowledge Dr.Kytai Nguyen for helping with DLS measurements and Alexios Papadimitratos for ESR measurements.LL would like to acknowledge support by the Welch Foundation grant number AT-1877-20180324 and the UT Dallas-NRUF Collaborative Biomedical Research Award(CoBRA).
文摘Aggregation-induced emission luminogens(AIEgens)exhibit efficient cytotoxic reactive oxygen species(ROS)generation capability and unique light-up features in the aggregated state,which have been well explored in image-guided photodynamic therapy(PDT).However,the limited penetration depth of light in tissue severely hinders AIEgens as a candidate for primary or adjunctive therapy for clinical applications.Coincidentally,microwaves(MWs)show a distinct advantage for deeper penetration depth in tissues than light.Herein,for the first time,we report AIEgen-mediated microwave dynamic therapy(MWDT)for cancer treatment.We found that two AIEgens(TPEPy-I and TPEPy-PF6)served as a new type of microwave(MW)sensitizers to produce ROS,including singlet oxygen(1O2),resulting in efficient destructions of cancer cells.The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)and live/dead assays reveal that the two AIEgens when activated by MW irradiation can effectively kill cancer cells with average IC-50 values of 2.73 and 3.22μM,respectively.Overall,the ability of the two AIEgens to be activated by MW not only overcomes the limitations of conventional PDT,but also helps to improve existing MW ablation therapy by reducing the MW dose required to achieve the same therapeutic outcome,thus reducing the occurrence of side-effects of MW radiation.
基金supported by the National Key R&D Program of China(no.2018YFE0205400)the National Natural Science Foundation of China(nos.51725302 and 31870998)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(no.XDB36000000)the Beijing Nova Program of Science and Technology(no.Z191100001119091).
文摘Luminogens with aggregation-induced emission(AIEgens)have a wide range of biomedical applications in bioimaging,photodynamic anticancer,antibacterial therapy,and other fields,owing to their unique photophysical properties.The precise structural design and modification of AIE molecules have aroused great interest in the past years.As peptides-AIE hybrid materials,peptide-based AIEgens generally have better solubility,biocompatibility,and lower systemic toxicity.The functional diversity,modularity,and portability of peptides provide more possibilities for the intelligent structure and functional design of AIEgens.This review summarizes the recent research progress of peptide-based AIEgens nanomaterials,from molecular design,stimuli responsiveness to biomedical application,focusing on the advantages of peptides and AIE molecules as conjugates.Finally,a summary of the challenges and opportunities of peptide-based AIEgens nanomaterials for future clinical biomedical applications is presented.
基金supported by the National Natural Science Foundation of China(21375042,21405054,21525523,21574048,and21404028)the National Basic Research Program of China(2015CB932600,2013CB933000,and 2016YFF0100800)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen,China(JCYJ20150616144425376)1000 Young Talent Program(to F.Xia)
文摘Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0211200)the National Natural Science Foundation of China(Nos.21974128,21874121)+2 种基金the Natural Science Foundation of Hubei Province,China(No.2019CFA043)supported by the Open Research Fund of the State Key Laboratory of Bioelectronics(Southeast University),China and the Hubei Postdoctoral Innovative Research Foundation,China(to Wu Jun)the Project Funded by China Postdoctoral Science Foundation(No.2020M672436).
文摘A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures,mainly focusing on DNA morphology modulation and multifunctional systems engineered into to the complicated works.Among the numerous detections,fluorescence method is a non-invasive,highly selective and sensitive means for varieties of applications,but their emissions are often compromised by the aggregation-caused quenching(ACQ)effect,which weakens their applications.The aggregation induced emission luminogens(AIEgens)are created with non emissive or weakly emissive in a low concentration but emit strong fluorescence in a high concentration with aggregated states.Herein,numerous functionalized AIEgens have been emerged and used for detection and imaging and DNA-modified AIEgen probes are introduced.In this vein,here we report the progress on DNA-modified AIEgen probes in recent years and highlight their conjugation strategies including covalent bonding,electrostatic interaction and their applications of biosensing.Moreover,multiple DNA strands are needed to introduce into the DNA-modified AIEgen probes for more purposes.At the end,some challenges are mentioned to discuss the new trend of DNA-modified AIEgen probes.
基金supported by the National Natural Science Foundation of China(62004074,51727809)the Science and Technology Department of Hubei Province(2019AAA063,2020BAA016)。
文摘Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.