Periodic solutions of the Zakharov equation are investigated.By performing the limit operationλ_(2l-1)→λ_(1)on the eigenvalues of the Lax pair obtained from the n-fold Darboux transformation,an order-n breather-pos...Periodic solutions of the Zakharov equation are investigated.By performing the limit operationλ_(2l-1)→λ_(1)on the eigenvalues of the Lax pair obtained from the n-fold Darboux transformation,an order-n breather-positon solution is first obtained from a plane wave seed.It is then proven that an order-n lump solution can be further constructed by taking the limitλ_(1)→λ_(0)on the breather-positon solution,because the unique eigenvalueλ_(0)associated with the Lax pair eigenfunctionΨ(λ_(0))=0 corresponds to the limit of the infinite-periodic solutions.A convenient procedure of generating higher-order lump solutions of the Zakharov equation is also investigated based on the idea of the degeneration of double eigenvalues in multi-breather solutions.展开更多
N-lump solutions of the Kadomtsev-Petviashvili I equation in non-uniform media are derived through the inverse scattering transform. The obtained solutions describe lump waves with time-dependent amplitudes and veloci...N-lump solutions of the Kadomtsev-Petviashvili I equation in non-uniform media are derived through the inverse scattering transform. The obtained solutions describe lump waves with time-dependent amplitudes and velocities. Dynamics of l-lump wave and interactions of two lump wave are illustrated.展开更多
In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to deri...In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n...By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic fun...With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.展开更多
The lump solutions and interaction solutions are mainly investigated for the(2+1)-dimensional KPI equation.According to relations of the undetermined parameters of the test functions,the N-soliton solutions are showed...The lump solutions and interaction solutions are mainly investigated for the(2+1)-dimensional KPI equation.According to relations of the undetermined parameters of the test functions,the N-soliton solutions are showed by computations of the Maple using the Hirota bilinear form for(2+1)-dimensional KPI equation.One type of the lump solutions for(2+1)-dimensional KPI equation has been deduced by the limit method of the N-soliton solutions.In addition,the interaction solutions between the lump and N-soliton solutions of it are studied by the undetermined interaction functions.The sufficient conditions for the existence of the interaction solutions are obtained.Furthermore,the new breather solutions for the(2+1)-dimensional KPI equation are considered by the homoclinic test method via new test functions including more parameters than common test functions.展开更多
In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational lo...In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.展开更多
A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed thr...A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specific presented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions.展开更多
Lump solutions are one of important solutions to partial differential equations,both linear and nonlinear.This paper aims to show that a Hietarinta-type fourth-order nonlinear term can create lump solutions with secon...Lump solutions are one of important solutions to partial differential equations,both linear and nonlinear.This paper aims to show that a Hietarinta-type fourth-order nonlinear term can create lump solutions with second-order linear dispersive terms.The key is a Hirota bilinear form.Lump solutions are constructed via symbolic computations with Maple,and specific reductions of the resulting lump solutions are made.Two illustrative examples of the generalized Hietarinta-type nonlinear equations and their lumps are presented,together with three-dimensional plots and density plots of the lump solutions.展开更多
We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to th...We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
A special transformation is introduced and thereby leads to the N-soliton solution of the(2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt(KDKK) equation.Then,by employing the long wave limit and ...A special transformation is introduced and thereby leads to the N-soliton solution of the(2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt(KDKK) equation.Then,by employing the long wave limit and imposing complex conjugate constraints to the related solitons,various localized interaction solutions are constructed,including the general M-lumps,T-breathers,and hybrid wave solutions.Dynamical behaviors of these solutions are investigated analytically and graphically.The solutions obtained are very helpful in studying the interaction phenomena of nonlinear localized waves.Therefore,we hope these results can provide some theoretical guidance to the experts in oceanography,atmospheric science,and weather forecasting.展开更多
The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equ...The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equation by the Hirota bilinear method and test function method.With the help of Maple,we draw three-dimensional plots of the lump solution and lump-type solutions,and by observing the plots,we analyze the dynamic behavior of the(2+1)-dimensional dissipative AKNS equation.We find that the interaction solutions come in a variety of interesting forms.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
In this paper,the(3+1)-dimensional nonlinear evolution equation is studied analytically.The bilinear form of given model is achieved by using the Hirota bilinear method.As a result,the lump waves and col-lisions betwe...In this paper,the(3+1)-dimensional nonlinear evolution equation is studied analytically.The bilinear form of given model is achieved by using the Hirota bilinear method.As a result,the lump waves and col-lisions between lumps and periodic waves,the collision among lump wave and single,double-kink soliton solutions as well as the collision between lump,periodic,and single,double-kink soliton solutions for the given model are constructed.Furthermore,some new traveling wave solutions are developed by applying the exp(−φ(ξ))expansion method.The 3D,2D and contours plots are drawn to demonstrate the nature of the nonlinear model for setting appropriate set of parameters.As a result,a collection of bright,dark,periodic,rational function and elliptic function solutions are established.The applied strategies appear to be more powerful and efficient approaches to construct some new traveling wave structures for various contemporary models of recent era.展开更多
This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we p...This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.展开更多
A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle t...A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.展开更多
基金sponsored by NUPTSF (Grant Nos.NY220161 and NY222169)the Foundation of Jiangsu Provincial Double-Innovation Doctor Program (Grant No.JSSCBS20210541)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No.22KJB110004)the National Natural Science Foundation of China (Grant No.12171433)。
文摘Periodic solutions of the Zakharov equation are investigated.By performing the limit operationλ_(2l-1)→λ_(1)on the eigenvalues of the Lax pair obtained from the n-fold Darboux transformation,an order-n breather-positon solution is first obtained from a plane wave seed.It is then proven that an order-n lump solution can be further constructed by taking the limitλ_(1)→λ_(0)on the breather-positon solution,because the unique eigenvalueλ_(0)associated with the Lax pair eigenfunctionΨ(λ_(0))=0 corresponds to the limit of the infinite-periodic solutions.A convenient procedure of generating higher-order lump solutions of the Zakharov equation is also investigated based on the idea of the degeneration of double eigenvalues in multi-breather solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11071157Shanghai Leading Academic Discipline Project under Grant No.J50101
文摘N-lump solutions of the Kadomtsev-Petviashvili I equation in non-uniform media are derived through the inverse scattering transform. The obtained solutions describe lump waves with time-dependent amplitudes and velocities. Dynamics of l-lump wave and interactions of two lump wave are illustrated.
基金supported by the National Natural Science Foundation of China(Nos.12101572,12371256)2023 Shanxi Province Graduate Innovation Project(No.2023KY614)the 19th Graduate Science and Technology Project of North University of China(No.20231943)。
文摘In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271211,11275072,and 11435005Ningbo Natural Science Foundation under Grant No.2015A610159+1 种基金the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzw11502K.C.Wong Magna Fund in Ningbo University
文摘With symbolic computation, some lump solutions are presented to a(3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.
基金Thisworkwas supportedby the National Natural Science Foundation of China(Grant Nos.11861013,11771444)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.201806)Promotion of the Basic Capacity of Middle and Young Teachers in Guangxi Universities(No.2017KY0340).
文摘The lump solutions and interaction solutions are mainly investigated for the(2+1)-dimensional KPI equation.According to relations of the undetermined parameters of the test functions,the N-soliton solutions are showed by computations of the Maple using the Hirota bilinear form for(2+1)-dimensional KPI equation.One type of the lump solutions for(2+1)-dimensional KPI equation has been deduced by the limit method of the N-soliton solutions.In addition,the interaction solutions between the lump and N-soliton solutions of it are studied by the undetermined interaction functions.The sufficient conditions for the existence of the interaction solutions are obtained.Furthermore,the new breather solutions for the(2+1)-dimensional KPI equation are considered by the homoclinic test method via new test functions including more parameters than common test functions.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11675054 and 11435005+1 种基金Outstanding Doctoral Dissertation Cultivation Plan of Action under Grant No.YB2016039Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213
文摘In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.
基金Acknowledgements The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11301454, 11301331, 11371086, 11571079, 51771083), the NSF under the grant DMS-1664561, the Jiangsu Qing Lan Project for Excellent Young Teachers in University (2014), the Six Talent Peaks Project in Jiangsu Province (2016-JY-081), the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJB110020), the Natural Science Foundation of Jiangsu Province (Grant No. BK20151160), the Emphasis Foundation of Special Science Research on Subject Frontiers of CUMT under Grant No. 2017XKZDll, and the Distinguished Professorships by Shanghai University of Electric Power and Shanghai Polytechnic University.
文摘A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specific presented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11975145,11972291)the National Science Foundation(DMS-1664561)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(17KJB110020).
文摘Lump solutions are one of important solutions to partial differential equations,both linear and nonlinear.This paper aims to show that a Hietarinta-type fourth-order nonlinear term can create lump solutions with second-order linear dispersive terms.The key is a Hirota bilinear form.Lump solutions are constructed via symbolic computations with Maple,and specific reductions of the resulting lump solutions are made.Two illustrative examples of the generalized Hietarinta-type nonlinear equations and their lumps are presented,together with three-dimensional plots and density plots of the lump solutions.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2018RC031)the National Natural Science Foundation of China(Grant No.71971015)+1 种基金the Program of the Co-Construction with Beijing Municipal Commission of Education of China(Grant Nos.B19H100010and B18H100040)the Open Fund of IPOC(BUPT)。
文摘We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775116)the Jiangsu Qinglan High-Level Talent Project。
文摘A special transformation is introduced and thereby leads to the N-soliton solution of the(2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt(KDKK) equation.Then,by employing the long wave limit and imposing complex conjugate constraints to the related solitons,various localized interaction solutions are constructed,including the general M-lumps,T-breathers,and hybrid wave solutions.Dynamical behaviors of these solutions are investigated analytically and graphically.The solutions obtained are very helpful in studying the interaction phenomena of nonlinear localized waves.Therefore,we hope these results can provide some theoretical guidance to the experts in oceanography,atmospheric science,and weather forecasting.
文摘The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equation by the Hirota bilinear method and test function method.With the help of Maple,we draw three-dimensional plots of the lump solution and lump-type solutions,and by observing the plots,we analyze the dynamic behavior of the(2+1)-dimensional dissipative AKNS equation.We find that the interaction solutions come in a variety of interesting forms.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘In this paper,the(3+1)-dimensional nonlinear evolution equation is studied analytically.The bilinear form of given model is achieved by using the Hirota bilinear method.As a result,the lump waves and col-lisions between lumps and periodic waves,the collision among lump wave and single,double-kink soliton solutions as well as the collision between lump,periodic,and single,double-kink soliton solutions for the given model are constructed.Furthermore,some new traveling wave solutions are developed by applying the exp(−φ(ξ))expansion method.The 3D,2D and contours plots are drawn to demonstrate the nature of the nonlinear model for setting appropriate set of parameters.As a result,a collection of bright,dark,periodic,rational function and elliptic function solutions are established.The applied strategies appear to be more powerful and efficient approaches to construct some new traveling wave structures for various contemporary models of recent era.
文摘This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.
基金supported by the National Natural Science Foundation of China under grant number 11447017。
文摘A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.