Although a detailed finite element(FE) model provides more precise results, a lumped-mass stick(LMS) model is preferred because of its simplicity and rapid computational time. However, the reliability of LMS models ha...Although a detailed finite element(FE) model provides more precise results, a lumped-mass stick(LMS) model is preferred because of its simplicity and rapid computational time. However, the reliability of LMS models has been questioned especially for structures dominated by higher modes and seismic inputs. Normally, the natural frequencies and dynamic responses of a LMS model based on tributary area mass consideration are different from the results of the FE model. This study proposes a basic updating technique to overcome these discrepancies; the technique employs the identical modal response, D(t), to the detailed FE model. The parameter D(t) is a time variable function in the dynamic response composition and it depends on frequency and damping ratio for each mode, independent of the structure's mode shapes. The identical response D(t) for each mode is obtained from the frequency adaptive LMS model; the adaptive LMS model which can provide identical modal frequencies as the detailed FE model. Theoretical backgrounds and formulations of the updating technique are proposed. To validate the updating technique, two types of structures(a symmetric straight column and an unsymmetric T-shaped structure) are considered. From the seismic response results including base shear and base moment, the updating technique considerably improves the seismic response accuracy of the tributary area-based LMS model.展开更多
Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin laye...Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.展开更多
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-ma...In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.展开更多
Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a ...Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a serious problem during the pipeline transportation, leading to partial or total blockage of the pipeline and energy wastage. In this paper, a series of laboratory flow loop experiments were conducted to observe the wall sticking characteristics of crude oil with high water cut, high viscosity and high gel point at low transportation temperatures. The effects of shear stress and water cut on the wall sticking rate and occurrence temperature were investigated. Experimental results indicated that the wall sticking rate and occurrence temperature were lower under stronger shear stress and higher water cut conditions. A criterion of wall sticking occurrence temperature(WSOT) and a regression model of wall sticking rate were then established. Finally, the software was developed to calculate the pressure drop along the pipelines of crude oils with high water-cut. It was able to predict the wall sticking thickness of gelled oil and then calculate the pressure drop along the pipelines. A typical case study indicated that the prediction results obtained from the software were in agreement with actual measured values.展开更多
AIM:To determine the Bruch's membrane opening-minimum rim width(BMO-MRW) tipping point where corresponding visual field(VF) damages become detectable.METHODS:A total of 85 normal subjects and 83 glaucoma patie...AIM:To determine the Bruch's membrane opening-minimum rim width(BMO-MRW) tipping point where corresponding visual field(VF) damages become detectable.METHODS:A total of 85 normal subjects and 83 glaucoma patients(one eye per participant) were recruited for the study.All of the patients had VF examinations and spectral-domain optical coherence tomography to measure the BMO-MRW.Total deviation values for 52 VF points were allocated to the corresponding sector according to the Garway-Heath distribution map.To evaluate the relationship between VF loss and BMOMRW measurements,a "broken-stick" statistical model was used.The tipping point where the VF values started to sharply decrease as a function of BMO-MRW measurements was estimated and the slopes above and below this tipping point were compared.RESULTS:A 25.9% global BMO-MRW loss from normative value was required for the VF loss to be detectable.Sectorally,substantial BMO-MRW thinning in inferotemporal sector(33.1%) and relatively less BMO-MRW thinning in the superotemporal sector(8.9%) were necessary for the detection of the VF loss.Beyond the tipping point,the slopes were close to zero throughout all of the sectors and the VF loss was unrelated to the BMO-MRW loss.The VF loss was related to the BMO-MRW loss below the tipping point.The difference between the two slopes was statistically significant(P≤0.002).CONCLUSION:Substantial BMO-MRW loss appears to be necessary for VF loss to be detectable in patients with open angle glaucoma with standard achromatic perimetry.展开更多
A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are ...A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.展开更多
The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water ab...The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water absorption of dust-sticking agent was analyzed. In addition, the mathematical model of the loss rate of dust-sticking agent was established by the application of fluid mechanics theory, and the method of determining the sprinkle parameters of dust-sticking agent was obtained. Through practical verifi-cation, it is found that the error of this mathematical model is less than 10%. So it can be used in the field.展开更多
基金Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,Science and Technology under Grant No.20151D1A3A01020017
文摘Although a detailed finite element(FE) model provides more precise results, a lumped-mass stick(LMS) model is preferred because of its simplicity and rapid computational time. However, the reliability of LMS models has been questioned especially for structures dominated by higher modes and seismic inputs. Normally, the natural frequencies and dynamic responses of a LMS model based on tributary area mass consideration are different from the results of the FE model. This study proposes a basic updating technique to overcome these discrepancies; the technique employs the identical modal response, D(t), to the detailed FE model. The parameter D(t) is a time variable function in the dynamic response composition and it depends on frequency and damping ratio for each mode, independent of the structure's mode shapes. The identical response D(t) for each mode is obtained from the frequency adaptive LMS model; the adaptive LMS model which can provide identical modal frequencies as the detailed FE model. Theoretical backgrounds and formulations of the updating technique are proposed. To validate the updating technique, two types of structures(a symmetric straight column and an unsymmetric T-shaped structure) are considered. From the seismic response results including base shear and base moment, the updating technique considerably improves the seismic response accuracy of the tributary area-based LMS model.
基金supported by the National Natural Science Foundation of China(Grant No.22075146)。
文摘Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.
基金Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Knowledge Economy, Republic of Korea under Grant No. 2010T100101066
文摘In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.
基金the support from the projects of the National Natural Science Foundation of China(No.51374224)for this research
文摘Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a serious problem during the pipeline transportation, leading to partial or total blockage of the pipeline and energy wastage. In this paper, a series of laboratory flow loop experiments were conducted to observe the wall sticking characteristics of crude oil with high water cut, high viscosity and high gel point at low transportation temperatures. The effects of shear stress and water cut on the wall sticking rate and occurrence temperature were investigated. Experimental results indicated that the wall sticking rate and occurrence temperature were lower under stronger shear stress and higher water cut conditions. A criterion of wall sticking occurrence temperature(WSOT) and a regression model of wall sticking rate were then established. Finally, the software was developed to calculate the pressure drop along the pipelines of crude oils with high water-cut. It was able to predict the wall sticking thickness of gelled oil and then calculate the pressure drop along the pipelines. A typical case study indicated that the prediction results obtained from the software were in agreement with actual measured values.
文摘AIM:To determine the Bruch's membrane opening-minimum rim width(BMO-MRW) tipping point where corresponding visual field(VF) damages become detectable.METHODS:A total of 85 normal subjects and 83 glaucoma patients(one eye per participant) were recruited for the study.All of the patients had VF examinations and spectral-domain optical coherence tomography to measure the BMO-MRW.Total deviation values for 52 VF points were allocated to the corresponding sector according to the Garway-Heath distribution map.To evaluate the relationship between VF loss and BMOMRW measurements,a "broken-stick" statistical model was used.The tipping point where the VF values started to sharply decrease as a function of BMO-MRW measurements was estimated and the slopes above and below this tipping point were compared.RESULTS:A 25.9% global BMO-MRW loss from normative value was required for the VF loss to be detectable.Sectorally,substantial BMO-MRW thinning in inferotemporal sector(33.1%) and relatively less BMO-MRW thinning in the superotemporal sector(8.9%) were necessary for the detection of the VF loss.Beyond the tipping point,the slopes were close to zero throughout all of the sectors and the VF loss was unrelated to the BMO-MRW loss.The VF loss was related to the BMO-MRW loss below the tipping point.The difference between the two slopes was statistically significant(P≤0.002).CONCLUSION:Substantial BMO-MRW loss appears to be necessary for VF loss to be detectable in patients with open angle glaucoma with standard achromatic perimetry.
文摘A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.
文摘The development of NCZ-1 dust-sticking agent was first intreduced in china. The speed of water absorption of dust-stick-ing agent was measured and studied on mining site and in laboratory, and then the law of water absorption of dust-sticking agent was analyzed. In addition, the mathematical model of the loss rate of dust-sticking agent was established by the application of fluid mechanics theory, and the method of determining the sprinkle parameters of dust-sticking agent was obtained. Through practical verifi-cation, it is found that the error of this mathematical model is less than 10%. So it can be used in the field.