期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Revealing the Landform Types and Morphologic Features of Lunar Surface 被引量:1
1
作者 CHENG Weiming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1517-1518,共2页
A lunar geologic map at a scale of 1:5000000 was finished in the 1970s by the National Aeronautics and Space Administration, U.S U.S. Geological Survey. Department of the Interior, Till now, the landform classificati... A lunar geologic map at a scale of 1:5000000 was finished in the 1970s by the National Aeronautics and Space Administration, U.S U.S. Geological Survey. Department of the Interior, Till now, the landform classification system and lunar morphologic mapping have not been clarified. The work aims to put forward a new landform classification system and to obtain index and map in the Sheet H010. Some key morphologic features of lunar surface were compared with those of the Earth. This research is very important for whole lunar morphologic mapping and unraveling evolutionary progress. 展开更多
关键词 THAN Revealing the Landform Types and Morphologic Features of lunar surface
下载PDF
The influence of lunar surface position on irradiance of moonbased earth radiation observation
2
作者 Yuan ZHANG Shengshan BI Jiangtao WU 《Frontiers of Earth Science》 SCIE CSCD 2022年第3期757-773,共17页
As a platform for longer-term continuous moon-based earth radiation observation(MERO)which includes reflected solar short-wave(SW)radiation and long-wave infrared(LW)radiation,the huge lunar surface space can provide ... As a platform for longer-term continuous moon-based earth radiation observation(MERO)which includes reflected solar short-wave(SW)radiation and long-wave infrared(LW)radiation,the huge lunar surface space can provide multiple location choices.It is important to analyze the influence of lunar surface position on irradiance which is the aim of the present work based on a radiation heat transfer model.To compare the differences caused by positions,the site of 0°E 0°N was selected as the reference site and a good agreement of the calculation results was verified by the comparison with the NISTAR’s actual detected data.By analyzing the spatial characteristics of the irradiance,the results showed that the irradiance on the lunar surface was of circular distribution and the instrument that was placed in the region of 65°W-65°E and 65°S-65°N could detect the irradiance most effectively.The relative deviation between the reference site and the marginal area(region of>65°S or 65°N or>65°W or 65°E)was less than 0.9 mW∙m^(-2) and the small regional differences make a small-scale network conducive to radiometric calibration between instruments.To achieve accurate measurement of the irradiance,the sensitivity design goal of the MERO instrument should be better than 1 mW∙m^(-2) in a future actual design.Because the lunar polar region is the priority region for future exploration,the irradiance at the poles has also been analyzed.The results show that the irradiance changes periodically and exhibits complementary characteristics of time.The variation range of irradiance for short-wave radiation is greater than longwave radiation and the irradiance of SW reaches the maximum at different times.The MERO at the polar region will provide valuable practical experiment for the followup study of the moon-based earth observation in low latitudes. 展开更多
关键词 IRRADIANCE earth observation moon-based lunar surface position NISTAR
原文传递
Calibration of the space-borne microwave humidity sounder based on real-time thermal emission from lunar surface
3
作者 Niutao LIU Yaqiu JIN 《Science China Earth Sciences》 SCIE EI CSCD 2021年第3期494-502,共9页
Calibration is a key issue for quantitative application of meteorological satellite data. The complex space environment may cause many uncertainties in data calibration. A highly stable and reliable calibrator in flig... Calibration is a key issue for quantitative application of meteorological satellite data. The complex space environment may cause many uncertainties in data calibration. A highly stable and reliable calibrator in flight is needed. Because the Moon has no atmosphere and no environmental variation, the physical and chemical properties of its surface are stable in the long term. The Moon might be an ideal candidate for in-flight thermal calibration. In advanced satellite-borne microwave remote sensing such as NOAA-18, the deep space view(DSV) of the microwave humidity sounder(MHS) has viewed the Moon many times every year.Using the thermal-physical properties of the lunar regolith derived from the Diviner infrared(IR) brightness temperature(TB) data,we solve the one-dimensional heat conduction equation to obtain the temperature profile of the near side of the lunar regolith medium. The loss tangents of the regolith medium are retrieved from microwave TB data of the Chinese satellite Chang’e-2. The integrated radiative transfer equation is used to simulate the weighted disk-average TB of the lunar surface for the MHS channels at89, 157, and 183 GHz for the year 2011. The Moon is taken as an extended circular target. The simulated TBs are used to correct the full width at half maximum(FWHM) fitted with the MHS counts. We analyze the influences of the distance between the satellite and the Moon, the lunar phase angle, and the FWHM of the radiometer on the inverted FWHM. The corrected TB data are compared with the simulation. This paper presents a new method for thermal calibration of spaceborne in-flight microwave and millimeter-wave radiometers with the weighted disk-average TB of the lunar surface. 展开更多
关键词 Microwave humidity sounder Tb calibration Thermal emission of lunar surface FWHM
原文传递
国际月球天文台、银河论坛与深空探测国际合作
4
作者 Steve Durst 《Aerospace China》 2023年第1期20-24,共5页
The International Lunar Observatory Association(ILOA) is an inter-global enterprise incorporated in Hawai’i as a non-profit organization in 2007 to advance human understanding the cosmos through observation of the mo... The International Lunar Observatory Association(ILOA) is an inter-global enterprise incorporated in Hawai’i as a non-profit organization in 2007 to advance human understanding the cosmos through observation of the moon, helping to realize long-term astronomical and scientific exploration of the moon’s South Pole, and participate in a human lunar base build-out-with Aloha. ILOA has an international board of 28 Directors from around the world. Science education and public engagement have been fundamental principles for ILOA since its inception in 2007. 展开更多
关键词 MOON ASTRONOMY milky way galaxy lunar surface cislunar international cooperation
下载PDF
Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment
5
作者 崔兴柱 王焕玉 +8 位作者 张承模 陈勇 张家宇 彭文溪 曹学蕾 梁小华 汪锦州 高旻 杨家卫 《Chinese Physics C》 SCIE CAS CSCD 北大核心 2008年第1期24-27,共4页
As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an... As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of the quasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented. 展开更多
关键词 X-ray fluorescence elemental abundance lunar surface quantitative analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部