In recent years,the Lunar south pole region(SPR)has become the focus of future explorations due to its special illumination condition and the possible water ice in permanently shadowed craters around it.The Shackleton...In recent years,the Lunar south pole region(SPR)has become the focus of future explorations due to its special illumination condition and the possible water ice in permanently shadowed craters around it.The Shackleton crater locates almost exactly at the Moon’s south pole and has become the hottest destination for several landing missions,including the Chang’E-7 mission.However,people still know little about the electric potential and the dust environment around this crater.In this paper,we develop an analytical model to study the surface potential and the electrostatic dust transport around the crater.It is found that the crater’s floor can be negatively charged due to the topographic shielding,and the surface potential is as low as-175 V on the leeward crater wall.Accordingly,a large number of charged dust grains can be emitted from the leeward crater wall,with a maximum height of about 10 km and a horizontal distance of about 40 km,which brings a local dust cloud around the crater.Both the topographic shielding and the local dust cloud are qualitatively verified by a numerical simulation,in which a typical dust density of 10^(4)-10^(5)m^(-3)is found near the crater.Our results are important to the environmental assessment for future explorations near the crater.Furthermore,the results are helpful to understand the surface charging and the electrostatic dust transport on the other airless bodies.展开更多
There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbite...There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.展开更多
The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data o...The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.展开更多
The Chinese Chang’e-3 mission landed close to the eastern rim of the ~450 m diameter Ziwei crater. Regional stratigraphy of the landing site and impact excavation model suggest that the bulk continuous ejecta deposit...The Chinese Chang’e-3 mission landed close to the eastern rim of the ~450 m diameter Ziwei crater. Regional stratigraphy of the landing site and impact excavation model suggest that the bulk continuous ejecta deposits of the Ziwei crater are composed by Erathothenian-aged mare basalts. Along the traverse of the Yutu rover, the western segment features a gentle topographic uplift(~0.5 m high over ~4 m), which is spatially connected with the structurally-uplifted crater rim. Assuming that this broad topographic uplift has physical properties discontinuous with materials below, we use data returned by the high-frequency lunar penetrating radar onboard the Yutu rover to estimate the possible range of relative permittivity for this topographic uplift. Only when the relative permittivity is ~9 is the observed radar reflection consistent with the observed topography, suggesting that the topographic uplift is composed of basaltic blocks that were excavated by the Ziwei crater. This result is consistent both with the impact excavation model that predicts deeper basaltic materials being deposited closer to the crater rim, and with observation of numerous half-buried boulders on the surface of this hill. We note that this study is the first to use topography and radargram data to estimate the relative permittivity of lunar surface uplifts, an approach that has had many successful applications on Mars. Similar approaches can apply other ground penetrating radar data for the Moon, such as will be available from the ongoing Chang’e-4 mission.展开更多
The object-oriented approach is a powerful method in making classification. With the segmentation of images to objects, many features can be calculated based on the objects so that the targets can be distinguished. Ho...The object-oriented approach is a powerful method in making classification. With the segmentation of images to objects, many features can be calculated based on the objects so that the targets can be distinguished. However, this method has not been applied to lunar study. In this paper we attempt to apply this method to detecting lunar craters with promising results. Craters are the most obvious features on the moon and they are important for lunar geologic study. One of the important questions in lunar research is to estimate lunar surface ages by examination of crater density per unit area. Hence, proper detection of lunar craters is necessary. Manual crater identification is inefficient, and a more efficient and effective method is needed. This paper describes an object-oriented method to detect lunar craters using lunar reflectance images. In the method, many objects were first segmented from the image based on size, shape, color, and the weights to every layer. Then the feature of "contrast to neighbor objects" was selected to identify craters from the lunar image. In the next step, by merging the adjacent objects belonging to the same class, almost every crater can be taken as an independent object except several very big craters in the study area. To remove the crater rays diagnosed as craters, the feature of "length/width" was further used with suitable parameters to finish recognizing craters. Finally, the result was exported to ArcGIS for manual modification to those big craters and the number of craters was acquired.展开更多
In China's first lunar exploration project,Chang-E 1,the multi-channel (3.0,7.8,19.35,37 GHz) microwave radiometers were aboard the satellite,with the purpose of measuring microwave brightness temperature from lun...In China's first lunar exploration project,Chang-E 1,the multi-channel (3.0,7.8,19.35,37 GHz) microwave radiometers were aboard the satellite,with the purpose of measuring microwave brightness temperature from lunar surface and surveying the global distribution of lunar regolith layer thickness,and global evaluation of 3He content.To analyze the modeling of microwave radiative transfer from three-layered media of lunar surface,some factors,such as the cratered lunar surface roughness,scattering of regolith particulate medium with temperature profile,are discussed.Based on the statistics of the lunar cratered terrain and using Monte Carlo (MC) method,the cratered lunar surfaces are numerically generated.The triangulated network is utilized to divide the undulated lunar surface into discrete triangle meshes with the size 10 m as a digital surface topography.The reflectivities of each plane mesh are calculated,and the average reflectivity for all MC-realized lunar surfaces is obtained.It is found that under the spatial resolution of 30 km×30 km of Chang-E 1 radiometer observation,the lunar surface can be well modeled as a flat surface.It makes the predominance of the parameters,such as the regolith layer thickness and stratified structures,to be studied.Using the radiative transfer equation of stratified media with dense scatterers,the scattering coefficient of the regolith particulate medium is found negligible,and the emission is mainly governed by the absorptive property of the medium.Brightness temperature of multi-layered media,i.e.lunar soil,regolith layer with temperature profile and underlying rock media,are derived and calculated,and relevant main factors to affect the modeling and emission simulation are analyzed.展开更多
Through the implementation of China's Lunar Exploration Program(CLEP), a large amount of data has been acquired. This paper will present the latest scientific results based on these data involving the composition,...Through the implementation of China's Lunar Exploration Program(CLEP), a large amount of data has been acquired. This paper will present the latest scientific results based on these data involving the composition, topography, space environment, subsurface structure of the Moon, and asteroid exploration and moon-based observations, etc.展开更多
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(Grant Nos.42174216,12075108,41903058&62371215)+2 种基金the Pre-research Project on Civil Aerospace Technologies by CNSA(Grant Nos.D050106,D020201)the Frontier Science Research Program of Deep Space Exploration Laboratory(Grant No.2022-QYKYJH-HXYF023)the Pandeng Program of National Space Science Center,Chinese Academy of Sciences。
文摘In recent years,the Lunar south pole region(SPR)has become the focus of future explorations due to its special illumination condition and the possible water ice in permanently shadowed craters around it.The Shackleton crater locates almost exactly at the Moon’s south pole and has become the hottest destination for several landing missions,including the Chang’E-7 mission.However,people still know little about the electric potential and the dust environment around this crater.In this paper,we develop an analytical model to study the surface potential and the electrostatic dust transport around the crater.It is found that the crater’s floor can be negatively charged due to the topographic shielding,and the surface potential is as low as-175 V on the leeward crater wall.Accordingly,a large number of charged dust grains can be emitted from the leeward crater wall,with a maximum height of about 10 km and a horizontal distance of about 40 km,which brings a local dust cloud around the crater.Both the topographic shielding and the local dust cloud are qualitatively verified by a numerical simulation,in which a typical dust density of 10^(4)-10^(5)m^(-3)is found near the crater.Our results are important to the environmental assessment for future explorations near the crater.Furthermore,the results are helpful to understand the surface charging and the electrostatic dust transport on the other airless bodies.
文摘There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40871177 and 41171332)the Knowledge Innovation Project of the Institute of Geographic and Natural Resources Research, the Chinese Academy of Sci-ences (Grant No. 201001005)
文摘The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.
基金supported by the National Natural Science Foundation of China (41773063, 41525015 and 41830214)the Science and Technology Development Fund of Macao (0042/2018/A2)the Opening Fund of the Key Laboratory of Lunar and Deep Space Exploration, CAS (no.ldse201702)
文摘The Chinese Chang’e-3 mission landed close to the eastern rim of the ~450 m diameter Ziwei crater. Regional stratigraphy of the landing site and impact excavation model suggest that the bulk continuous ejecta deposits of the Ziwei crater are composed by Erathothenian-aged mare basalts. Along the traverse of the Yutu rover, the western segment features a gentle topographic uplift(~0.5 m high over ~4 m), which is spatially connected with the structurally-uplifted crater rim. Assuming that this broad topographic uplift has physical properties discontinuous with materials below, we use data returned by the high-frequency lunar penetrating radar onboard the Yutu rover to estimate the possible range of relative permittivity for this topographic uplift. Only when the relative permittivity is ~9 is the observed radar reflection consistent with the observed topography, suggesting that the topographic uplift is composed of basaltic blocks that were excavated by the Ziwei crater. This result is consistent both with the impact excavation model that predicts deeper basaltic materials being deposited closer to the crater rim, and with observation of numerous half-buried boulders on the surface of this hill. We note that this study is the first to use topography and radargram data to estimate the relative permittivity of lunar surface uplifts, an approach that has had many successful applications on Mars. Similar approaches can apply other ground penetrating radar data for the Moon, such as will be available from the ongoing Chang’e-4 mission.
基金National Natural Science Foundation of China (Grant No. 40573047)National High-Tech Research & Development Program of China (Grant No. 2008AA12A212)
文摘The object-oriented approach is a powerful method in making classification. With the segmentation of images to objects, many features can be calculated based on the objects so that the targets can be distinguished. However, this method has not been applied to lunar study. In this paper we attempt to apply this method to detecting lunar craters with promising results. Craters are the most obvious features on the moon and they are important for lunar geologic study. One of the important questions in lunar research is to estimate lunar surface ages by examination of crater density per unit area. Hence, proper detection of lunar craters is necessary. Manual crater identification is inefficient, and a more efficient and effective method is needed. This paper describes an object-oriented method to detect lunar craters using lunar reflectance images. In the method, many objects were first segmented from the image based on size, shape, color, and the weights to every layer. Then the feature of "contrast to neighbor objects" was selected to identify craters from the lunar image. In the next step, by merging the adjacent objects belonging to the same class, almost every crater can be taken as an independent object except several very big craters in the study area. To remove the crater rays diagnosed as craters, the feature of "length/width" was further used with suitable parameters to finish recognizing craters. Finally, the result was exported to ArcGIS for manual modification to those big craters and the number of craters was acquired.
基金supported by the National Natural Science Foundation of China(60971091,40637033)the State Key Laboratory of Remote Sensing Science(2009KFJJ011)
文摘In China's first lunar exploration project,Chang-E 1,the multi-channel (3.0,7.8,19.35,37 GHz) microwave radiometers were aboard the satellite,with the purpose of measuring microwave brightness temperature from lunar surface and surveying the global distribution of lunar regolith layer thickness,and global evaluation of 3He content.To analyze the modeling of microwave radiative transfer from three-layered media of lunar surface,some factors,such as the cratered lunar surface roughness,scattering of regolith particulate medium with temperature profile,are discussed.Based on the statistics of the lunar cratered terrain and using Monte Carlo (MC) method,the cratered lunar surfaces are numerically generated.The triangulated network is utilized to divide the undulated lunar surface into discrete triangle meshes with the size 10 m as a digital surface topography.The reflectivities of each plane mesh are calculated,and the average reflectivity for all MC-realized lunar surfaces is obtained.It is found that under the spatial resolution of 30 km×30 km of Chang-E 1 radiometer observation,the lunar surface can be well modeled as a flat surface.It makes the predominance of the parameters,such as the regolith layer thickness and stratified structures,to be studied.Using the radiative transfer equation of stratified media with dense scatterers,the scattering coefficient of the regolith particulate medium is found negligible,and the emission is mainly governed by the absorptive property of the medium.Brightness temperature of multi-layered media,i.e.lunar soil,regolith layer with temperature profile and underlying rock media,are derived and calculated,and relevant main factors to affect the modeling and emission simulation are analyzed.
基金Supported by National Science Foundation of China(41590851)
文摘Through the implementation of China's Lunar Exploration Program(CLEP), a large amount of data has been acquired. This paper will present the latest scientific results based on these data involving the composition, topography, space environment, subsurface structure of the Moon, and asteroid exploration and moon-based observations, etc.
文摘探测器软着陆后的姿态是上升器月面稳定起飞的前提基础,研究月壤撞击坑给探测器着陆性能带来的影响对上升器月面稳定起飞具有重要意义。通过有限元法(FEM)模拟GRC-1型月壤的非线性力学特性,并与文献[13]中三轴试验结果对比,验证了仿真方法的有效性;在综合考虑月壤非线性、反推火箭残余应力、姿态控制力和重力的基础上,建立了探测器着陆过程动力学模型;以四腿悬架式着陆器为研究对象,研究了月壤撞击坑对探测器着陆后姿态的影响。结果表明:探测器着陆后的姿态角随撞击坑深度的增加而增大;若要保证上升器月面稳定起飞,撞击坑深度不能超过600 mm.