期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ultraprecision intersatellite laser interferometry 被引量:4
1
作者 Min Ming Yingxin Luo +8 位作者 Yu-Rong Liang Jing-Yi Zhang Hui-Zong Duan Hao Yan Yuan-Ze Jiang Ling-Feng Lu Qin Xiao Zebing Zhou Hsien-Chi Yeh 《International Journal of Extreme Manufacturing》 2020年第2期54-66,共13页
Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools inv... Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools invented in the 20th century.Today,it is commonly used in ultraprecision machining and manufacturing,ultraprecision positioning control,and many noncontact optical sensing technologies.So far,the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors,e.g.the Laser Interferometer Gravitational-wave Observatory(LIGO).The LIGO has reached the measurement quantum limit,and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level.In this paper,we focus on the laser interferometry developed for space-based gravitational-wave detection.The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail.The launch and operation of these large-scale,gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s. 展开更多
关键词 laser interferometry gravitational-wave detection inter-satellite laser ranging transponder laser interferometer
下载PDF
Parameter estimation for Einstein-dilaton-Gauss-Bonnet gravity with ringdown signals
2
作者 邵才莹 胡宇 邵成刚 《Chinese Physics C》 SCIE CAS CSCD 2023年第10期213-224,共12页
Future space-based gravitational-wave detectors will detect gravitational waves with high sensitivity in the millihertz frequency band,providing more opportunities to test theories of gravity than ground-based detecto... Future space-based gravitational-wave detectors will detect gravitational waves with high sensitivity in the millihertz frequency band,providing more opportunities to test theories of gravity than ground-based detectors.The study of quasinormal modes(QNMs)and their application in gravity theory testing have been an important aspect in the field of gravitational physics.In this study,we investigate the capability of future space-based gravitational wave detectors,such as LISA,TaiJi,and TianQin,to constrain the dimensionless deviating parameter for Einsteindilaton-Gauss-Bonnet(EdGB)gravity with ringdown signals from the merger of binary black holes.The ringdown signal is modeled by the two strongest QNMs in EdGB gravity.Considering time-delay interferometry,we calculate the signal-to-noise ratio of different space-based detectors for ringdown signals to analyze their capabilities.The Fisher information matrix is employed to analyze the accuracy of parameter estimation,with particular focus on the dimensionless deviating parameter for EdGB gravity.The impact of the parameters of gravitational wave sources on the estimation accuracy of the dimensionless deviating parameter is also studied.We find that the constraint ability of EdGB gravity is limited because the uncertainty of the dimensionless deviating parameter increases with a decrease in the dimensionless deviating parameter.LISA and TaiJi offer more advantages in constraining the dimensionless deviating parameter to a more accurate level for massive black holes,whereas TianQin is more suited to less massive black holes.The Bayesian inference method is used to perform parameter estimation on simulated data,which verifies the reliability of the conclusion. 展开更多
关键词 Einstein-dilaton-Gauss-Bonnet gravity quasinormal modes space-based gravitational-wave detection parameter estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部