Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
Stereotactic body radiation therapy(SBRT) is the treatment of choice for medically inoperable patients with early stage non-small cell lung cancer(NSCLC). A literature search primarily based on PubMed electronic datab...Stereotactic body radiation therapy(SBRT) is the treatment of choice for medically inoperable patients with early stage non-small cell lung cancer(NSCLC). A literature search primarily based on PubMed electronic databases was completed in July 2018. Inclusion and exclusion criteria were determined prior to the search, and only prospective clinical trials were included. Nineteen trials from 2005 to 2018 met the inclusion criteria, reporting the outcomes of 1434 patients with central and peripheral early stage NSCLC. Patient eligibility,prescription dose and delivery, and follow up duration varied widely. Threeyears overall survival ranged from 43% to 95% with loco-regional control of up to 98% at 3 years. Up to 33% of patients failed distantly after SBRT at 3 years. SBRT was generally well tolerated with 10%-30% grade 3-4 toxicities and a few treatment-related deaths. No differences in outcomes were observed between conventionally fractionated radiation therapy and SBRT, central and peripheral lung tumors, or inoperable and operable patients. SBRT remains a reasonable treatment option for medically inoperable and select operable patients with early stage NSCLC. SBRT has shown excellent local and regional control with toxicity rates equivalent to surgery. Decreasing fractionation schedules have been consistently shown to be both safe and effective. Distant failure is common, and chemotherapy may be considered for select patients. However, the survival benefit of additional interventions, such as chemotherapy, for early stage NSCLC treated with SBRT remains unclear.展开更多
Background:Body mass index(BMI)has a U?shaped association with lung cancer risk.However,the effect of BMI on prognosis is controversial.This retrospective study aimed to investigate the effect of BMI on the survival o...Background:Body mass index(BMI)has a U?shaped association with lung cancer risk.However,the effect of BMI on prognosis is controversial.This retrospective study aimed to investigate the effect of BMI on the survival of patients with stage I non?small cell lung cancer(NSCLC)after surgical resection.Methods:In total,624 consecutive stage I NSCLC patients who underwent radical resection were classified into four groups according to their BMI:underweight(BMI<18.5 kg/m^2),normal weight(BMI obese(BMI>28.0 kg/m^2).The effect of BMI on progress=18.5–22.4 kg/m2),overweight(BMI=22.5–28.0 kg/m^2),andion?free survival(PFS)and over?all survival(OS)was estimated using the Kaplan–Meier method and Cox proportional hazards model.Postoperative complications in each group were analyzed using the Chi square test or Fisher’s exact test.Results:A univariate analysis showed that PFS and OS were longer in the overweight group than in other groups(both P<0.05).A multivariate analysis showed that OS was longer in the overweight group than in other groups(compared with the other three groups in combination:hazard ratio[HR]e underweight group:HR=1.87,95%confidence interval[CI]1.30–2.68,P=0.003;compared with th3,P=2.24,95%CI 1.18–4.25,P=0.013;compared with the normal weight group:HR 1.48–5.59,P=1.58,95%CI 1.07–2.3=0.022;compared with the obese group:HR=2.87,95%CIwe=0.002),but PFS was similar among the groups(HRd an association between being overweight and pro=1.28,95%CI 0.97–1.68,P longed OS in patients at sta=0.080).A subgroup analysis shoge T1a(P 0.001).Overweight=0.024),T1b(P=0.051),and T2a(P=0.02),as well as in patients with a non?smoking history(P=patients had lower rates of postoperative complications,such as respiratory failure(compared with the underweight and obese groups:P=0.014),myocardial infarction(compared with the obese group:P=0.033),and perioperative death(com?pared with the other three groups:P=0.016).Conclusions:Preoperative BMI is an independent prognostic factor for stage I NSCLC patients after resection,with overweight patients having a favorable prognosis.展开更多
Purpose: To investigate the feasibility of partial arc volumetric modulated arc therapy (VMAT) in lung cancer stereotactic body radiotherapy (SBRT), as well the volumetric and dosimetric effects of different internal ...Purpose: To investigate the feasibility of partial arc volumetric modulated arc therapy (VMAT) in lung cancer stereotactic body radiotherapy (SBRT), as well the volumetric and dosimetric effects of different internal target volume (ITV) definitions with 4D CT. Methods: Fourteen patients with primary and metastatic lung cancer underwent SBRT were enrolled. Full and partial arc VMAT plans were generated with four different ITVs: ITVall, ITVMIP, ITVAIP and ITV2phases, representing ITVs generated from all 10 respiratory phases, maximum intensity projection (MIP), average intensity projection (AIP), and 2 extreme respiratory phases. Volumetric and dosimetric differences, as well as MU and delivery time were investigated. Results: Partial arc VMAT irradiated more dose at 2 cm away from planning target volume (PTV) (P = 0.002), however, it achieved better protection on mean lung dose , lung V5, spinal cord, heart and esophagus compared with full arc VMAT. The average MU and delivery time of partial arc VMAT were 240 and 1.6 min less than those of full arc VMAT. There were no significant differences on target coverage and organ at risks (OARs) sparing among four ITVs. The average percent volume differences of ITVMIP, ITVAIP and ITV2phases to ITVall were 8.6%, 13.4%, and 25.2%, respectively. Conclusions: Although partial arc VMAT delivered more dose 2 cm out of PTV, it decreases the dose to lung, spinal cord, and esophagus, as well decreased the total MU and delivery time compared with full arc VMAT without sacrificing target coverage. Partial arc VMAT was feasible and more efficient for lung SBRT.展开更多
Total body irradiation(TBI)combined with chemotherapy prior to bone marrow transplantation(BMT)is used successfully for treatment leukemias.It need a high and homogeneous radiation dose to all target cells,dispersed I...Total body irradiation(TBI)combined with chemotherapy prior to bone marrow transplantation(BMT)is used successfully for treatment leukemias.It need a high and homogeneous radiation dose to all target cells,dispersed In the whole body.The lung is the most sensitive vital organ at risk in TBI.The lung dose must be within it's tolerable level.So,the determination of the lung dose is most Important for TBI.The determination of the lung dose is dependent on at least 8 parameters.In order to determine the effect of 8 parameters on the lung dose,using a system of phantom of Essen University hospital in F.R.Germany,a lot of measurements and a systematical investigation was made by varying 8 parameters,under the Essen translation TBI conditions.A analysis and discussion of results was made.展开更多
Purpose of this study was to evaluate the variation of the dose to gross tumor volume (GTV) related to tumor position and lung density for lung stereotactic body radiotherapy (SBRT) using a virtual phantom. The densit...Purpose of this study was to evaluate the variation of the dose to gross tumor volume (GTV) related to tumor position and lung density for lung stereotactic body radiotherapy (SBRT) using a virtual phantom. The density of the equivalent lung surrounding the GTV (10 mm diameter) was defined as 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3. A planning target volume (PTV) was generated by adding a uniform 8 mm margin to the internal target volume (ITV). We defined that the 99% of the GTV should be covered by 100% of the prescribed dose using Monte Carlo (MC) calculation. The GTV structure was replicated from ITV to the PTV periphery at 1 mm intervals. Planned dose to the GTV was defined as the predicted dose in the replicated GTV structure. Simulated dose to the GTV was defined as the calculated dose in the replicated GTV structure taking into account the tumor position error. D99 of the planned dose to the GTV at the 8 mm shift position was 78.1%, 81.6%, 87.3%, 91.4% and 94.4% at equivalent lung densities of 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3, respectively. D99 of the simulated dose to the GTV at the 8 mm shift position was 96.9%, 95.3%, 94.2%, 95.1 % and 96.3% at equivalent lung densities of 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3, respectively. Planned dose to GTV is strongly dependent on lung density and tumor position errors, while simulated dose to GTV does not show any significant dependence.展开更多
Objective The combination of stereotactic body radiation therapy(SBRT)and immune checkpoint inhibitors(ICIs)is actively being explored in advanced non-small-cell lung cancer(NSCLC)patients.However,little is known abou...Objective The combination of stereotactic body radiation therapy(SBRT)and immune checkpoint inhibitors(ICIs)is actively being explored in advanced non-small-cell lung cancer(NSCLC)patients.However,little is known about the optimal fractionation and radiotherapy target lesions in this scenario.This study investigated the effect of SBRT on diverse organ lesions and radiotherapy dose fractionation regimens on the prognosis of advanced NSCLC patients receiving ICIs.Methods The medical records of advanced NSCLC patients consecutively treated with ICIs and SBRT were retrospectively reviewed at our institution from Dec.2015 to Sep.2021.Patients were grouped according to radiation sites.Progression-free survival(PFS)and overall survival(OS)were recorded using the Kaplan-Meier method and compared between different treatment groups using the log-rank(Mantel-Cox)test.Results A total of 124 advanced NSCLC patients receiving ICIs combined with SBRT were identified in this study.Radiation sites included lung lesions(lung group,n=43),bone metastases(bone group,n=24),and brain metastases(brain group,n=57).Compared with the brain group,the mean PFS(mPFS)in the lung group was significantly prolonged by 13.3 months(8.5 months vs.21.8 months,HR=0.51,95%CI:0.28–0.92,P=0.0195),and that in the bone group prolonged by 9.5 months with a 43%reduction in the risk of disease progression(8.5 months vs.18.0 months,HR=0.57,95%CI:0.29–1.13,P=0.1095).The mPFS in the lung group was prolonged by 3.8 months as compared with that in the bone group.The mean OS(mOS)in the lung and bone groups was longer than that of the brain group,and the risk of death decreased by up to 60%in the lung and bone groups as compared with that of the brain group.When SBRT was concurrently given with ICIs,the mPFS in the lung and brain groups were significantly longer than that of the bone group(29.6 months vs.16.5 months vs.12.1 months).When SBRT with 8–12 Gy per fraction was combined with ICIs,the mPFS in the lung group was significantly prolonged as compared with that of the bone and brain groups(25.4 months vs.15.2 months vs.12.0 months).Among patients receiving SBRT on lung lesions and brain metastases,the mPFS in the concurrent group was longer than that of the SBRT→ICIs group(29.6 months vs.11.4 months,P=0.0003 and 12.1 months vs.8.9 months,P=0.2559).Among patients receiving SBRT with<8 Gy and 8–12 Gy per fraction,the mPFS in the concurrent group was also longer than that of the SBRT→ICIs group(20.1 months vs.5.3 months,P=0.0033 and 24.0 months vs.13.4 months,P=0.1311).The disease control rates of the lung,bone,and brain groups were 90.7%,83.3%,and 70.1%,respectively.Conclusion The study demonstrated that the addition of SBRT on lung lesions versus bone and brain metastases to ICIs improved the prognosis in advanced NSCLC patients.This improvement was related to the sequence of radiotherapy combined with ICIs and the radiotherapy fractionation regimens.Dose fractionation regimens of 8–12 Gy per fraction and lung lesions as radiotherapy targets might be the appropriate choice for advanced NSCLC patients receiving ICIs combined with SBRT.展开更多
The European Organization for Research on Treatment of Cancer Research published a consensus statement to establish the key criteria to define oligometastatic disease(OMD).According to those criteria,all lesions(both ...The European Organization for Research on Treatment of Cancer Research published a consensus statement to establish the key criteria to define oligometastatic disease(OMD).According to those criteria,all lesions(both primary and metastatic)should be amenable to radical intent treatment with acceptable toxicity.Several retrospective studies have shown that adding local ablative therapy to the treatment of OMD improves outcomes;however,due to the diverse selection criteria and treatment strategies used in those studies,it is difficult to compare directly results to draw definitive conclusions.In recent years,prospective phase II trials,such as the SABR-COMET and"Oligomez"trials,have shown that stereotactic body radiation therapy(SBRT)improves outcomes in patients with OMD.More recently,interim results of the randomised phase 3 SINDAS trial were reported at the annual meeting of the American Society of Clinical Oncology 2020 demonstrating that upfront SBRT added to systemic treatment with tyrosine kinase inhibitors yielded a significant benefit in both progression-free survival and overall survival in patients with epidermal growth factor receptor-mutant oligometastatic non-small cell lung cancer.In the present editorial,we review the definition and historical context of advanced non-small cell lung cancer with OMD.In addition,we review the scientific evidence for local ablative therapy and SBRT and discuss the results of recently published prospective studies.We also discuss in depth the results of the SINDAS study,including the strengths and weaknesses of the study and the barriers to extrapolating these results to routine clinical practice.展开更多
Objective: We investigated the correlation between the number of circulating tumor cells(CTCs) and wholebody metabolic tumor volume(WBMTV) measured by 18 F-fluorodeoxyglucose(FDG) positron emission tomography/computed...Objective: We investigated the correlation between the number of circulating tumor cells(CTCs) and wholebody metabolic tumor volume(WBMTV) measured by 18 F-fluorodeoxyglucose(FDG) positron emission tomography/computed tomography(PET/CT).The aim was to evaluate the value of the incorporation of CTC number and WBMTV in the prognostic prediction of stage III small-cell lung cancer(SCLC).Methods: One hundred and twenty-nine patients were enrolled in this study.All patients were treated with four cycles of a platinum-based regimen and concurrent chest irradiation,followed by prophylactic cranial irradiation.Blood samples for CTC analysis were obtained from 112 patients before the initiation of chemotherapy(as a baseline),after cycle 1 and after cycle 4.CTCs were measured using the CELLSEARCH? system.The patients underwent pretreatment FDG PET/CT WBMTV,which included all malignant lesions.The Spearman rank test was used to determine the correlation among CTC counts,WBMTV and disease stage.Overall survival(OS) and progression-free survival(PFS) curves were produced using the Kaplan-Meier method,and survival differences between groups were assessed by the log-rank test.Results: The number of CTCs at baseline did not correlate with WBMTV before the initiation of therapy(P=0.241).The number of CTCs at baseline and the WBMTV before the initiation of therapy were independent relevant factors for PFS and OS.The subgroup analysis(Group A: CTC count >19.5 and a WBMTV >266.5cm~3;Group B: CTC count >19.5 and a WBMTV ≤266.5cm~3; Group C: CTC count ≤19.5 and a WBMTV >266.5cm~3;Group D: CTC count ≤19.5 and a WBMTV ≤266.5cm~3) showed that the differences were statistically significant in the median PFS(Group A vs.D,P<0.001; Group B vs.D,P=0.018; Group C vs.D,P=0.029) and in the median OS(Group A vs.D,P<0.001; Group B vs.D,P=0.012).Conclusions: CTC number and WBMTV are related to progression and death in patients with SCLC.The incorporation of CTC number and WBMTV scans can provide a detailed prognostic prediction for SCLC.展开更多
Purpose: Lung toxicity is a primary side effect in stereotactic radiotherapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). We aimed to use a set of radiobiological models to evaluate and compare modern IM...Purpose: Lung toxicity is a primary side effect in stereotactic radiotherapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). We aimed to use a set of radiobiological models to evaluate and compare modern IMRT delivery techniques with three-dimensional conformal techniques for SBRT treatment of NSCLC in terms of lung toxicity, and aimed to compare the results from different radiobiologcal models. Methods: Ten early-stage NSCLC patients treated with SBRT were retrospectively selected. Five treatment plans were generated to deliver 50 Gy in five fractions to the planning target volume for each case: a helical tomotherapy (HT) plan, two three-dimensional cofnromal radiotherapy (3D-CRT) plans using 6-MV and 10-MV photon beams respectively, and two volumetric modulated arc therapy (VMAT) plans using one and two arc fields respectively. The lung RDV was calculated with three parallel functional sub-unit (FSU) models and two normal tissue complication probability (NTCP) models. Results: Both the HT and VMAT plans showed significantly higher contralateral mean lung dose and lower ipsilateral mean lung dose compared to the 3D-CRT plans. There was no statistically significant difference in terms of lung toxicities between the IMRT and 3D-CRT techniques using either the FSU models or the NTCP models. Based on both the FSU and the NTCP models, there was strong correlation between lung toxicity and the mean lung dose in SBRT treatment plans. Conclusions: Based on both the NTCP and parallel FSU models, both IMRT and traditional 3D-CRT delivery techniques could achieve comparable lung sparing inn SBRT treatment of early-stage lung cancer. However, the validity of the radiobiological model results should be checked by clinical data.展开更多
Purpose: To evaluate the current status of stereotactic body radiotherapy (SBRT) for early staged non-small cell lung cancer (NSCLC) at main cancer hospitals in China. Methods and Materials: The questionnaire was sent...Purpose: To evaluate the current status of stereotactic body radiotherapy (SBRT) for early staged non-small cell lung cancer (NSCLC) at main cancer hospitals in China. Methods and Materials: The questionnaire was sent by mail and email to 21 hospitals, which include the patient enrollment, treatment technique, dose and fractionation, quality control, disease control and side effects. Results: Nineteen hospitals responded. It was found that SBRT has been used for early staged NSCLC in most of the hospitals participating in the survey. The patient characteristics and techniques were relatively consistent, but there were many controversies regarding dose fractionation and quality control. Conclusions: SBRT for early staged NSCLC has been applied at main cancer hospitals in China. However, considerable variation exists. The establishment of clinical guidelines and standardized quality control are crucial for further improvement.展开更多
Stereotactic body radiotherapy(SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer(NSCLC).Herein,we highlight the importance of interfraction image guidan...Stereotactic body radiotherapy(SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer(NSCLC).Herein,we highlight the importance of interfraction image guidance during SBRT.We describe a case of earlystage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction.The case exemplifies the importance of crosssectional image-guided radiotherapy that shows the intended target,as opposed to aligning based on rigid anatomy alone,especially in cases associated with potentially "volatile" anatomic areas.展开更多
We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to Apr...We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to April 2012. Gross tumor volume (GTV) was 8.1 ± 11.0 cc (range 0.3 - 77.5 cc). The tumor site was the upper and middle lobes in 62 cases, and lower lobe in 52 cases. The Air-Bag SystemTM consists of an inelastic air bag connected to a second smaller elastic air bag. The inelastic air bag is placed between the patient’s body surface and a HipFix and is secured by pressure adjustment via the elastic air bag. To assess respiratory tumor motion, the centroid of the tumor position is measured in the left-right, anterior-posterior, and caudal-cranial directions using the iPlan RT DoseTM treatment planning system. Respiratory tumor motion vector for patients with upper/middle and lower lobe tumors was 3.0 ± 2.2 mm (range, 0.4 - 11.7 mm) and 6.5 ± 4.6 mm (range, 0.4 - 22.0 mm) respectively, with this difference being significant (p < 0.05). Mean respiratory tumor motion for all patients was 0.9 ± 0.6 mm (range, 0.1 - 3.6 mm) in the left-right direction, 1.5 ± 1.1 mm (range, 0.1 - 5.7 mm) in the anterior-posterior direction, 4.1 ± 4.0 mm (range, 0.1 - 21.4 mm) in the caudal-cranial direction, and 4.7 ± 4.0 mm (range, 0.4 - 22.0 mm) overall. The Air-Bag System is expected to be provided an effective reduction in the motion of lung tumors.展开更多
The purpose of this study was to compare the dose-volume statistics of stereotactic body radiotherapy (SBRT) for lung cancer between planning target volume (PTV): D95 and gross tumor volume (GTV): D99 dose prescriptio...The purpose of this study was to compare the dose-volume statistics of stereotactic body radiotherapy (SBRT) for lung cancer between planning target volume (PTV): D95 and gross tumor volume (GTV): D99 dose prescriptions using Monte Carlo (MC) calculation. Plans for 183 patients treated between October 2010 and April 2013 were generated based on four-dimensional (4D) computed tomography (CT) under free breathing. A uniform margin of 8 mm was added to the internal target volume (ITV) to generate PTV. A leaf margin of 2 mm was added to the PTV. The plans were calculated with two different dose prescription methods: 40 Gy to cover 95% of the PTV (PTV prescription) and 44 Gy to cover 99% of the GTV (GTV prescription). A 6-MV photon beam was used. A dose-volume histogram (DVH) analysis was performed for dose to the GTV using PTV and GTV dose prescriptions. For each treatment plan, we evaluated the minimum dose to 99% of the GTV (D99). The D99 of GTV was 44.5 ± 1.9 Gy and 44.0 ± 0.0 Gy for PTV and GTV prescriptions, respectively. The dose to the GTV had wide variations with PTV prescription. We recommend that GTV based dose prescription should be used to standardize dose to the tumor and to achieve highly conformal dose distributions in SBRT for lung cancer.展开更多
Stereotactic ablative body radiotherapy(SABR)is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer(NSCLC)and pulmonary metastasis.Several ...Stereotactic ablative body radiotherapy(SABR)is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer(NSCLC)and pulmonary metastasis.Several fractionation schemes have proven to be safe and effective,including the single fraction(SF)scheme.SF is an option costeffectiveness,more convenience and comfortable for the patient and flexible in terms of its management combined with systemic treatments.The outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic has driven this not new but underutilized paradigm,recommending this option to minimize patients’visits to hospital.SF SABR already has a long experience,strong evidence and sufficient maturity to reliably evaluate outcomes in peripheral primary NSCLC and there are promising outcomes in pulmonary metastases,making it a valid treatment option;although its use in central locations,synchronous and recurrencies tumors requires more prospective safety and efficacy studies.The SABR radiobiology study,together with the combination with systemic therapies,(targeted therapies and immunotherapy)is a direction of research in both advanced disease and early stages whose future includes SF.展开更多
Objectives: This Phase I study determines the maximum tolerated dose (MTD) of stereotactic body radiotherapy (SBRT) for lung tumors. Methods: Eli- gible patients had biopsy proven cancer with a maxi- mum tumor size ≤...Objectives: This Phase I study determines the maximum tolerated dose (MTD) of stereotactic body radiotherapy (SBRT) for lung tumors. Methods: Eli- gible patients had biopsy proven cancer with a maxi- mum tumor size ≤ 5 cm. Total doses were escalated from 40 to 48, then to 56 Gy, delivered in 4 equal fractions administered 2 to 3 times per week on an IRB approved protocol. SBRT was administered us- ing 5 to 9 fixed beam arrangements with CT loca- lization. Internal target volumes (ITV) were based on breath hold scans or 4D CT simulation. The planning target volume (PTV) was defined as the ITV with a uniform 5 mm expansion. Dose limiting toxicity (DLT) was defined as any grade 3 or higher toxicity using the Radiation Therapy Oncology Group (RTOG) common toxicity criteria (CTC). Results: Between April 2004 and February 2008, 18 patients received the prescribed treatment (40 Gy n = 6, 48 Gy n = 7, 56 Gy n = 5). Seventeen of 18 patients had non-small cell lung cancer (1 with rectal cancer), four of whom were treated for an oligometastasis. The median age of the patients was 68, while the median Karnofsky performance status was 90. The mean tumor size was 2.6 cm (range 0.9 to 4.5 cm). One grade 3 pulmonary event occurred (at 48 Gy dose level) immediately following treatment with the onset of fever and shortness of breath that responded to antibiotics. No other DLTs occurred. Conclusions: SBRT utilizing patient specific target volumes without gating appears safe. The maximum tolerated dose was not reached.展开更多
In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies ...In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies we used MatLab. In simulation to approach to the real case we used an assumption of additional virtual body’s position and velocity for characterizing material of the body which is involved to express the restitution coefficient. The graphic animation program is developed based on ODE for the computer simulation of the proposed graphical method. Additionally, we determined this new characteristic for some sport game balls such as basketball, volleyball, etc.展开更多
AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively u...AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively used to measure cardiovascular hemodynamics, EVLWIp and EVLWIa via an arterial catheter placed in each patient within 48 h of meeting the criteria for severe sepsis from a medical intensive care unit(ICU) at a university affiliated hospital. Survival was the single dependent variable. In order to examine and compare the predictive power of EVLWIp, EVLWIa and other clinically significant factors in predicting the inhospital survival status of severe sepsis patients in the medical ICU, a receiver operating characteristic(ROC) curve method to analyze the significant variables and the area under the ROC curve(AUC) of the variables, P value and 95%CI were calculated.RESULTS: In total, 33 patients were studied. In the ROC curve method analyses, EVLWIp(the AUC: 0.849; P = 0.001, 95%CI: 0.72-0.98) was as predictive for inhospital survival rate as variables with EVLWIa(AUC, 0.829; P = 0.001, 95%CI: 0.68-0.98). The proportion of patients surviving with a low EVLW(EVLWI < 10 m L/kg) was better than that of patients with a higher EVLW, whether indexed by actual(HR = 0.2; P = 0.0002, 95%CI: 0.06-0.42) or predicted body weight(HR = 0.13; P < 0.0001, 95%CI: 0.05-0.35) during their hospital stay with the Kaplan-Meier method(76% vs 12.5%, respectively).CONCLUSION: This investigation proposed that EVLWIp is as good a predictor as EVLWIa to predict inhospital survival rate among severe sepsis patients in the medical ICU.展开更多
<strong>Purpose: </strong><span><span style="font-family:""><span style="font-family:Verdana;">Verified the delivered dose distribution of lung cancer Stereotacti...<strong>Purpose: </strong><span><span style="font-family:""><span style="font-family:Verdana;">Verified the delivered dose distribution of lung cancer Stereotactic </span><span><span style="font-family:Verdana;">Body Radiotherapy (SBRT) using the cone-beam CT images. </span><b><span style="font-family:Verdana;">Methods:</span></b></span><b> </b><span style="font-family:Verdana;">Twenty </span><span style="font-family:Verdana;">lung cancer patients </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">who </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">underwent SBRT with 100 CBCT images were</span></span><span><span style="font-family:""> <span style="font-family:Verdana;">enrolled in this study. Delivered dose distributions were recalculated on</span><span style="font-family:Verdana;"> CBCT images with </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span><span style="font-family:""><span style="font-family:Verdana;">deformed and non-deformed metho</span><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span><span style="font-family:""><span style="font-family:Verdana;">, respectively. The </span><span style="font-family:Verdana;">planned and delivered dose distributions were compared using the</span><span style="font-family:Verdana;"> dose-volume histograms. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">The delivered target coverage (V100) per patient inside target volume deviated on average were 0.83% ± 0.86% and 1.38% ±</span></span></span><span><span style="font-family:""> </span></span><span><span style="font-family:""><span style="font-family:Verdana;">1.40% for Pct </span><i><span style="font-family:Verdana;">vs</span></i><span style="font-family:Verdana;">. Pcbct and Pct </span><i><span style="font-family:Verdana;">vs</span></i><span style="font-family:Verdana;">. Pdcbct, respectively. The Conformity Index (CI) and Gradient Index (GI) showed a good agreement among the plans. For the critical organs, only minor differences were observed between the planned dose and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span><span style="font-family:""><span style="font-family:Verdana;">delivered dose. </span><b><span style="font-family:Verdana;">Conclusions: </span></b><span style="font-family:Verdana;">CBCT images were </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">useful tool for setup and dose deliver</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">y</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> verification for lung cancer patients </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">who </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">underwent SBRT.</span></span>展开更多
Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage f...Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.展开更多
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
文摘Stereotactic body radiation therapy(SBRT) is the treatment of choice for medically inoperable patients with early stage non-small cell lung cancer(NSCLC). A literature search primarily based on PubMed electronic databases was completed in July 2018. Inclusion and exclusion criteria were determined prior to the search, and only prospective clinical trials were included. Nineteen trials from 2005 to 2018 met the inclusion criteria, reporting the outcomes of 1434 patients with central and peripheral early stage NSCLC. Patient eligibility,prescription dose and delivery, and follow up duration varied widely. Threeyears overall survival ranged from 43% to 95% with loco-regional control of up to 98% at 3 years. Up to 33% of patients failed distantly after SBRT at 3 years. SBRT was generally well tolerated with 10%-30% grade 3-4 toxicities and a few treatment-related deaths. No differences in outcomes were observed between conventionally fractionated radiation therapy and SBRT, central and peripheral lung tumors, or inoperable and operable patients. SBRT remains a reasonable treatment option for medically inoperable and select operable patients with early stage NSCLC. SBRT has shown excellent local and regional control with toxicity rates equivalent to surgery. Decreasing fractionation schedules have been consistently shown to be both safe and effective. Distant failure is common, and chemotherapy may be considered for select patients. However, the survival benefit of additional interventions, such as chemotherapy, for early stage NSCLC treated with SBRT remains unclear.
基金supported by Science and Technology Planning Projects of Guangdong Province (No. 01578040171810021)
文摘Background:Body mass index(BMI)has a U?shaped association with lung cancer risk.However,the effect of BMI on prognosis is controversial.This retrospective study aimed to investigate the effect of BMI on the survival of patients with stage I non?small cell lung cancer(NSCLC)after surgical resection.Methods:In total,624 consecutive stage I NSCLC patients who underwent radical resection were classified into four groups according to their BMI:underweight(BMI<18.5 kg/m^2),normal weight(BMI obese(BMI>28.0 kg/m^2).The effect of BMI on progress=18.5–22.4 kg/m2),overweight(BMI=22.5–28.0 kg/m^2),andion?free survival(PFS)and over?all survival(OS)was estimated using the Kaplan–Meier method and Cox proportional hazards model.Postoperative complications in each group were analyzed using the Chi square test or Fisher’s exact test.Results:A univariate analysis showed that PFS and OS were longer in the overweight group than in other groups(both P<0.05).A multivariate analysis showed that OS was longer in the overweight group than in other groups(compared with the other three groups in combination:hazard ratio[HR]e underweight group:HR=1.87,95%confidence interval[CI]1.30–2.68,P=0.003;compared with th3,P=2.24,95%CI 1.18–4.25,P=0.013;compared with the normal weight group:HR 1.48–5.59,P=1.58,95%CI 1.07–2.3=0.022;compared with the obese group:HR=2.87,95%CIwe=0.002),but PFS was similar among the groups(HRd an association between being overweight and pro=1.28,95%CI 0.97–1.68,P longed OS in patients at sta=0.080).A subgroup analysis shoge T1a(P 0.001).Overweight=0.024),T1b(P=0.051),and T2a(P=0.02),as well as in patients with a non?smoking history(P=patients had lower rates of postoperative complications,such as respiratory failure(compared with the underweight and obese groups:P=0.014),myocardial infarction(compared with the obese group:P=0.033),and perioperative death(com?pared with the other three groups:P=0.016).Conclusions:Preoperative BMI is an independent prognostic factor for stage I NSCLC patients after resection,with overweight patients having a favorable prognosis.
文摘Purpose: To investigate the feasibility of partial arc volumetric modulated arc therapy (VMAT) in lung cancer stereotactic body radiotherapy (SBRT), as well the volumetric and dosimetric effects of different internal target volume (ITV) definitions with 4D CT. Methods: Fourteen patients with primary and metastatic lung cancer underwent SBRT were enrolled. Full and partial arc VMAT plans were generated with four different ITVs: ITVall, ITVMIP, ITVAIP and ITV2phases, representing ITVs generated from all 10 respiratory phases, maximum intensity projection (MIP), average intensity projection (AIP), and 2 extreme respiratory phases. Volumetric and dosimetric differences, as well as MU and delivery time were investigated. Results: Partial arc VMAT irradiated more dose at 2 cm away from planning target volume (PTV) (P = 0.002), however, it achieved better protection on mean lung dose , lung V5, spinal cord, heart and esophagus compared with full arc VMAT. The average MU and delivery time of partial arc VMAT were 240 and 1.6 min less than those of full arc VMAT. There were no significant differences on target coverage and organ at risks (OARs) sparing among four ITVs. The average percent volume differences of ITVMIP, ITVAIP and ITV2phases to ITVall were 8.6%, 13.4%, and 25.2%, respectively. Conclusions: Although partial arc VMAT delivered more dose 2 cm out of PTV, it decreases the dose to lung, spinal cord, and esophagus, as well decreased the total MU and delivery time compared with full arc VMAT without sacrificing target coverage. Partial arc VMAT was feasible and more efficient for lung SBRT.
文摘Total body irradiation(TBI)combined with chemotherapy prior to bone marrow transplantation(BMT)is used successfully for treatment leukemias.It need a high and homogeneous radiation dose to all target cells,dispersed In the whole body.The lung is the most sensitive vital organ at risk in TBI.The lung dose must be within it's tolerable level.So,the determination of the lung dose is most Important for TBI.The determination of the lung dose is dependent on at least 8 parameters.In order to determine the effect of 8 parameters on the lung dose,using a system of phantom of Essen University hospital in F.R.Germany,a lot of measurements and a systematical investigation was made by varying 8 parameters,under the Essen translation TBI conditions.A analysis and discussion of results was made.
文摘Purpose of this study was to evaluate the variation of the dose to gross tumor volume (GTV) related to tumor position and lung density for lung stereotactic body radiotherapy (SBRT) using a virtual phantom. The density of the equivalent lung surrounding the GTV (10 mm diameter) was defined as 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3. A planning target volume (PTV) was generated by adding a uniform 8 mm margin to the internal target volume (ITV). We defined that the 99% of the GTV should be covered by 100% of the prescribed dose using Monte Carlo (MC) calculation. The GTV structure was replicated from ITV to the PTV periphery at 1 mm intervals. Planned dose to the GTV was defined as the predicted dose in the replicated GTV structure. Simulated dose to the GTV was defined as the calculated dose in the replicated GTV structure taking into account the tumor position error. D99 of the planned dose to the GTV at the 8 mm shift position was 78.1%, 81.6%, 87.3%, 91.4% and 94.4% at equivalent lung densities of 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3, respectively. D99 of the simulated dose to the GTV at the 8 mm shift position was 96.9%, 95.3%, 94.2%, 95.1 % and 96.3% at equivalent lung densities of 0.10, 0.15, 0.25, 0.35, and 0.45 g/cm3, respectively. Planned dose to GTV is strongly dependent on lung density and tumor position errors, while simulated dose to GTV does not show any significant dependence.
文摘Objective The combination of stereotactic body radiation therapy(SBRT)and immune checkpoint inhibitors(ICIs)is actively being explored in advanced non-small-cell lung cancer(NSCLC)patients.However,little is known about the optimal fractionation and radiotherapy target lesions in this scenario.This study investigated the effect of SBRT on diverse organ lesions and radiotherapy dose fractionation regimens on the prognosis of advanced NSCLC patients receiving ICIs.Methods The medical records of advanced NSCLC patients consecutively treated with ICIs and SBRT were retrospectively reviewed at our institution from Dec.2015 to Sep.2021.Patients were grouped according to radiation sites.Progression-free survival(PFS)and overall survival(OS)were recorded using the Kaplan-Meier method and compared between different treatment groups using the log-rank(Mantel-Cox)test.Results A total of 124 advanced NSCLC patients receiving ICIs combined with SBRT were identified in this study.Radiation sites included lung lesions(lung group,n=43),bone metastases(bone group,n=24),and brain metastases(brain group,n=57).Compared with the brain group,the mean PFS(mPFS)in the lung group was significantly prolonged by 13.3 months(8.5 months vs.21.8 months,HR=0.51,95%CI:0.28–0.92,P=0.0195),and that in the bone group prolonged by 9.5 months with a 43%reduction in the risk of disease progression(8.5 months vs.18.0 months,HR=0.57,95%CI:0.29–1.13,P=0.1095).The mPFS in the lung group was prolonged by 3.8 months as compared with that in the bone group.The mean OS(mOS)in the lung and bone groups was longer than that of the brain group,and the risk of death decreased by up to 60%in the lung and bone groups as compared with that of the brain group.When SBRT was concurrently given with ICIs,the mPFS in the lung and brain groups were significantly longer than that of the bone group(29.6 months vs.16.5 months vs.12.1 months).When SBRT with 8–12 Gy per fraction was combined with ICIs,the mPFS in the lung group was significantly prolonged as compared with that of the bone and brain groups(25.4 months vs.15.2 months vs.12.0 months).Among patients receiving SBRT on lung lesions and brain metastases,the mPFS in the concurrent group was longer than that of the SBRT→ICIs group(29.6 months vs.11.4 months,P=0.0003 and 12.1 months vs.8.9 months,P=0.2559).Among patients receiving SBRT with<8 Gy and 8–12 Gy per fraction,the mPFS in the concurrent group was also longer than that of the SBRT→ICIs group(20.1 months vs.5.3 months,P=0.0033 and 24.0 months vs.13.4 months,P=0.1311).The disease control rates of the lung,bone,and brain groups were 90.7%,83.3%,and 70.1%,respectively.Conclusion The study demonstrated that the addition of SBRT on lung lesions versus bone and brain metastases to ICIs improved the prognosis in advanced NSCLC patients.This improvement was related to the sequence of radiotherapy combined with ICIs and the radiotherapy fractionation regimens.Dose fractionation regimens of 8–12 Gy per fraction and lung lesions as radiotherapy targets might be the appropriate choice for advanced NSCLC patients receiving ICIs combined with SBRT.
文摘The European Organization for Research on Treatment of Cancer Research published a consensus statement to establish the key criteria to define oligometastatic disease(OMD).According to those criteria,all lesions(both primary and metastatic)should be amenable to radical intent treatment with acceptable toxicity.Several retrospective studies have shown that adding local ablative therapy to the treatment of OMD improves outcomes;however,due to the diverse selection criteria and treatment strategies used in those studies,it is difficult to compare directly results to draw definitive conclusions.In recent years,prospective phase II trials,such as the SABR-COMET and"Oligomez"trials,have shown that stereotactic body radiation therapy(SBRT)improves outcomes in patients with OMD.More recently,interim results of the randomised phase 3 SINDAS trial were reported at the annual meeting of the American Society of Clinical Oncology 2020 demonstrating that upfront SBRT added to systemic treatment with tyrosine kinase inhibitors yielded a significant benefit in both progression-free survival and overall survival in patients with epidermal growth factor receptor-mutant oligometastatic non-small cell lung cancer.In the present editorial,we review the definition and historical context of advanced non-small cell lung cancer with OMD.In addition,we review the scientific evidence for local ablative therapy and SBRT and discuss the results of recently published prospective studies.We also discuss in depth the results of the SINDAS study,including the strengths and weaknesses of the study and the barriers to extrapolating these results to routine clinical practice.
基金supported by a grant from the National Health and Family Planning Commission of China(No.201402011)
文摘Objective: We investigated the correlation between the number of circulating tumor cells(CTCs) and wholebody metabolic tumor volume(WBMTV) measured by 18 F-fluorodeoxyglucose(FDG) positron emission tomography/computed tomography(PET/CT).The aim was to evaluate the value of the incorporation of CTC number and WBMTV in the prognostic prediction of stage III small-cell lung cancer(SCLC).Methods: One hundred and twenty-nine patients were enrolled in this study.All patients were treated with four cycles of a platinum-based regimen and concurrent chest irradiation,followed by prophylactic cranial irradiation.Blood samples for CTC analysis were obtained from 112 patients before the initiation of chemotherapy(as a baseline),after cycle 1 and after cycle 4.CTCs were measured using the CELLSEARCH? system.The patients underwent pretreatment FDG PET/CT WBMTV,which included all malignant lesions.The Spearman rank test was used to determine the correlation among CTC counts,WBMTV and disease stage.Overall survival(OS) and progression-free survival(PFS) curves were produced using the Kaplan-Meier method,and survival differences between groups were assessed by the log-rank test.Results: The number of CTCs at baseline did not correlate with WBMTV before the initiation of therapy(P=0.241).The number of CTCs at baseline and the WBMTV before the initiation of therapy were independent relevant factors for PFS and OS.The subgroup analysis(Group A: CTC count >19.5 and a WBMTV >266.5cm~3;Group B: CTC count >19.5 and a WBMTV ≤266.5cm~3; Group C: CTC count ≤19.5 and a WBMTV >266.5cm~3;Group D: CTC count ≤19.5 and a WBMTV ≤266.5cm~3) showed that the differences were statistically significant in the median PFS(Group A vs.D,P<0.001; Group B vs.D,P=0.018; Group C vs.D,P=0.029) and in the median OS(Group A vs.D,P<0.001; Group B vs.D,P=0.012).Conclusions: CTC number and WBMTV are related to progression and death in patients with SCLC.The incorporation of CTC number and WBMTV scans can provide a detailed prognostic prediction for SCLC.
文摘Purpose: Lung toxicity is a primary side effect in stereotactic radiotherapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). We aimed to use a set of radiobiological models to evaluate and compare modern IMRT delivery techniques with three-dimensional conformal techniques for SBRT treatment of NSCLC in terms of lung toxicity, and aimed to compare the results from different radiobiologcal models. Methods: Ten early-stage NSCLC patients treated with SBRT were retrospectively selected. Five treatment plans were generated to deliver 50 Gy in five fractions to the planning target volume for each case: a helical tomotherapy (HT) plan, two three-dimensional cofnromal radiotherapy (3D-CRT) plans using 6-MV and 10-MV photon beams respectively, and two volumetric modulated arc therapy (VMAT) plans using one and two arc fields respectively. The lung RDV was calculated with three parallel functional sub-unit (FSU) models and two normal tissue complication probability (NTCP) models. Results: Both the HT and VMAT plans showed significantly higher contralateral mean lung dose and lower ipsilateral mean lung dose compared to the 3D-CRT plans. There was no statistically significant difference in terms of lung toxicities between the IMRT and 3D-CRT techniques using either the FSU models or the NTCP models. Based on both the FSU and the NTCP models, there was strong correlation between lung toxicity and the mean lung dose in SBRT treatment plans. Conclusions: Based on both the NTCP and parallel FSU models, both IMRT and traditional 3D-CRT delivery techniques could achieve comparable lung sparing inn SBRT treatment of early-stage lung cancer. However, the validity of the radiobiological model results should be checked by clinical data.
文摘Purpose: To evaluate the current status of stereotactic body radiotherapy (SBRT) for early staged non-small cell lung cancer (NSCLC) at main cancer hospitals in China. Methods and Materials: The questionnaire was sent by mail and email to 21 hospitals, which include the patient enrollment, treatment technique, dose and fractionation, quality control, disease control and side effects. Results: Nineteen hospitals responded. It was found that SBRT has been used for early staged NSCLC in most of the hospitals participating in the survey. The patient characteristics and techniques were relatively consistent, but there were many controversies regarding dose fractionation and quality control. Conclusions: SBRT for early staged NSCLC has been applied at main cancer hospitals in China. However, considerable variation exists. The establishment of clinical guidelines and standardized quality control are crucial for further improvement.
文摘Stereotactic body radiotherapy(SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer(NSCLC).Herein,we highlight the importance of interfraction image guidance during SBRT.We describe a case of earlystage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction.The case exemplifies the importance of crosssectional image-guided radiotherapy that shows the intended target,as opposed to aligning based on rigid anatomy alone,especially in cases associated with potentially "volatile" anatomic areas.
文摘We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to April 2012. Gross tumor volume (GTV) was 8.1 ± 11.0 cc (range 0.3 - 77.5 cc). The tumor site was the upper and middle lobes in 62 cases, and lower lobe in 52 cases. The Air-Bag SystemTM consists of an inelastic air bag connected to a second smaller elastic air bag. The inelastic air bag is placed between the patient’s body surface and a HipFix and is secured by pressure adjustment via the elastic air bag. To assess respiratory tumor motion, the centroid of the tumor position is measured in the left-right, anterior-posterior, and caudal-cranial directions using the iPlan RT DoseTM treatment planning system. Respiratory tumor motion vector for patients with upper/middle and lower lobe tumors was 3.0 ± 2.2 mm (range, 0.4 - 11.7 mm) and 6.5 ± 4.6 mm (range, 0.4 - 22.0 mm) respectively, with this difference being significant (p < 0.05). Mean respiratory tumor motion for all patients was 0.9 ± 0.6 mm (range, 0.1 - 3.6 mm) in the left-right direction, 1.5 ± 1.1 mm (range, 0.1 - 5.7 mm) in the anterior-posterior direction, 4.1 ± 4.0 mm (range, 0.1 - 21.4 mm) in the caudal-cranial direction, and 4.7 ± 4.0 mm (range, 0.4 - 22.0 mm) overall. The Air-Bag System is expected to be provided an effective reduction in the motion of lung tumors.
文摘The purpose of this study was to compare the dose-volume statistics of stereotactic body radiotherapy (SBRT) for lung cancer between planning target volume (PTV): D95 and gross tumor volume (GTV): D99 dose prescriptions using Monte Carlo (MC) calculation. Plans for 183 patients treated between October 2010 and April 2013 were generated based on four-dimensional (4D) computed tomography (CT) under free breathing. A uniform margin of 8 mm was added to the internal target volume (ITV) to generate PTV. A leaf margin of 2 mm was added to the PTV. The plans were calculated with two different dose prescription methods: 40 Gy to cover 95% of the PTV (PTV prescription) and 44 Gy to cover 99% of the GTV (GTV prescription). A 6-MV photon beam was used. A dose-volume histogram (DVH) analysis was performed for dose to the GTV using PTV and GTV dose prescriptions. For each treatment plan, we evaluated the minimum dose to 99% of the GTV (D99). The D99 of GTV was 44.5 ± 1.9 Gy and 44.0 ± 0.0 Gy for PTV and GTV prescriptions, respectively. The dose to the GTV had wide variations with PTV prescription. We recommend that GTV based dose prescription should be used to standardize dose to the tumor and to achieve highly conformal dose distributions in SBRT for lung cancer.
文摘Stereotactic ablative body radiotherapy(SABR)is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer(NSCLC)and pulmonary metastasis.Several fractionation schemes have proven to be safe and effective,including the single fraction(SF)scheme.SF is an option costeffectiveness,more convenience and comfortable for the patient and flexible in terms of its management combined with systemic treatments.The outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic has driven this not new but underutilized paradigm,recommending this option to minimize patients’visits to hospital.SF SABR already has a long experience,strong evidence and sufficient maturity to reliably evaluate outcomes in peripheral primary NSCLC and there are promising outcomes in pulmonary metastases,making it a valid treatment option;although its use in central locations,synchronous and recurrencies tumors requires more prospective safety and efficacy studies.The SABR radiobiology study,together with the combination with systemic therapies,(targeted therapies and immunotherapy)is a direction of research in both advanced disease and early stages whose future includes SF.
文摘Objectives: This Phase I study determines the maximum tolerated dose (MTD) of stereotactic body radiotherapy (SBRT) for lung tumors. Methods: Eli- gible patients had biopsy proven cancer with a maxi- mum tumor size ≤ 5 cm. Total doses were escalated from 40 to 48, then to 56 Gy, delivered in 4 equal fractions administered 2 to 3 times per week on an IRB approved protocol. SBRT was administered us- ing 5 to 9 fixed beam arrangements with CT loca- lization. Internal target volumes (ITV) were based on breath hold scans or 4D CT simulation. The planning target volume (PTV) was defined as the ITV with a uniform 5 mm expansion. Dose limiting toxicity (DLT) was defined as any grade 3 or higher toxicity using the Radiation Therapy Oncology Group (RTOG) common toxicity criteria (CTC). Results: Between April 2004 and February 2008, 18 patients received the prescribed treatment (40 Gy n = 6, 48 Gy n = 7, 56 Gy n = 5). Seventeen of 18 patients had non-small cell lung cancer (1 with rectal cancer), four of whom were treated for an oligometastasis. The median age of the patients was 68, while the median Karnofsky performance status was 90. The mean tumor size was 2.6 cm (range 0.9 to 4.5 cm). One grade 3 pulmonary event occurred (at 48 Gy dose level) immediately following treatment with the onset of fever and shortness of breath that responded to antibiotics. No other DLTs occurred. Conclusions: SBRT utilizing patient specific target volumes without gating appears safe. The maximum tolerated dose was not reached.
文摘In this paper we present a graphical method for decision of restitution coefficient based on ODE. To simulate and illustrate our proposed method and efficient characteristics that demonstrate for two colliding bodies we used MatLab. In simulation to approach to the real case we used an assumption of additional virtual body’s position and velocity for characterizing material of the body which is involved to express the restitution coefficient. The graphic animation program is developed based on ODE for the computer simulation of the proposed graphical method. Additionally, we determined this new characteristic for some sport game balls such as basketball, volleyball, etc.
基金Supported by Grants from Taiwan National Science Council,No.NSC-100-2314-B-182A-054Chang Gung Memorial Hospital,Nos.CMRPG3B0831,CMRPG3B0832 and CMRPG3A0562
文摘AIM: To investigate extravascular lung water indexed to predicted body weight(EVLWIp) and actual body weight(EVLWIa) on outcome of patients with severe sepsis.METHODS: Transpulmonary thermodilution was prospectively used to measure cardiovascular hemodynamics, EVLWIp and EVLWIa via an arterial catheter placed in each patient within 48 h of meeting the criteria for severe sepsis from a medical intensive care unit(ICU) at a university affiliated hospital. Survival was the single dependent variable. In order to examine and compare the predictive power of EVLWIp, EVLWIa and other clinically significant factors in predicting the inhospital survival status of severe sepsis patients in the medical ICU, a receiver operating characteristic(ROC) curve method to analyze the significant variables and the area under the ROC curve(AUC) of the variables, P value and 95%CI were calculated.RESULTS: In total, 33 patients were studied. In the ROC curve method analyses, EVLWIp(the AUC: 0.849; P = 0.001, 95%CI: 0.72-0.98) was as predictive for inhospital survival rate as variables with EVLWIa(AUC, 0.829; P = 0.001, 95%CI: 0.68-0.98). The proportion of patients surviving with a low EVLW(EVLWI < 10 m L/kg) was better than that of patients with a higher EVLW, whether indexed by actual(HR = 0.2; P = 0.0002, 95%CI: 0.06-0.42) or predicted body weight(HR = 0.13; P < 0.0001, 95%CI: 0.05-0.35) during their hospital stay with the Kaplan-Meier method(76% vs 12.5%, respectively).CONCLUSION: This investigation proposed that EVLWIp is as good a predictor as EVLWIa to predict inhospital survival rate among severe sepsis patients in the medical ICU.
文摘<strong>Purpose: </strong><span><span style="font-family:""><span style="font-family:Verdana;">Verified the delivered dose distribution of lung cancer Stereotactic </span><span><span style="font-family:Verdana;">Body Radiotherapy (SBRT) using the cone-beam CT images. </span><b><span style="font-family:Verdana;">Methods:</span></b></span><b> </b><span style="font-family:Verdana;">Twenty </span><span style="font-family:Verdana;">lung cancer patients </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">who </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">underwent SBRT with 100 CBCT images were</span></span><span><span style="font-family:""> <span style="font-family:Verdana;">enrolled in this study. Delivered dose distributions were recalculated on</span><span style="font-family:Verdana;"> CBCT images with </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span><span style="font-family:""><span style="font-family:Verdana;">deformed and non-deformed metho</span><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span><span style="font-family:""><span style="font-family:Verdana;">, respectively. The </span><span style="font-family:Verdana;">planned and delivered dose distributions were compared using the</span><span style="font-family:Verdana;"> dose-volume histograms. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">The delivered target coverage (V100) per patient inside target volume deviated on average were 0.83% ± 0.86% and 1.38% ±</span></span></span><span><span style="font-family:""> </span></span><span><span style="font-family:""><span style="font-family:Verdana;">1.40% for Pct </span><i><span style="font-family:Verdana;">vs</span></i><span style="font-family:Verdana;">. Pcbct and Pct </span><i><span style="font-family:Verdana;">vs</span></i><span style="font-family:Verdana;">. Pdcbct, respectively. The Conformity Index (CI) and Gradient Index (GI) showed a good agreement among the plans. For the critical organs, only minor differences were observed between the planned dose and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span><span style="font-family:""><span style="font-family:Verdana;">delivered dose. </span><b><span style="font-family:Verdana;">Conclusions: </span></b><span style="font-family:Verdana;">CBCT images were </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">useful tool for setup and dose deliver</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">y</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> verification for lung cancer patients </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">who </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">underwent SBRT.</span></span>
文摘Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.