Millions of people are suffering from Alzheimer’s disease globally,but there is still no effective treatment for this neurodegenerative disease.Thus,novel therapeutic approaches for Alzheimer’s disease are needed,wh...Millions of people are suffering from Alzheimer’s disease globally,but there is still no effective treatment for this neurodegenerative disease.Thus,novel therapeutic approaches for Alzheimer’s disease are needed,which requires further evaluation of the regulato ry mechanisms of protein aggregate degradation.Lysosomes are crucial degradative organelles that maintain cellular homeostasis.Transcription factor EB-mediated lysosome biogenesis enhances autolysosomedependent degradation,which subsequently alleviates neurodege nerative diseases,including Alzheimer’s disease,Parkinson’s disease,and Huntington’s disease.In this review,we start by describing the key features of lysosomes,including their roles in nutrient sensing and degradation,and their functional impairments in different neurodegenerative diseases.We also explain the mechanisms—especially the post-translational modifications—which impact transcription factor EB and regulate lysosome biogenesis.Next,we discuss strategies for promoting the degradation of toxic protein aggregates.We describe Proteolysis-Ta rgeting Chimera and related technologies for the targeted degradation of specific proteins.We also introduce a group of LYsosome-Enhancing Compounds,which promote transcription factor EB-mediated lysosome biogenesis and improve learning,memory,and cognitive function in APP-PSEN1 mice.In summary,this review highlights the key aspects of lysosome biology,the mechanisms of transcription factor EB activation and lysosome biogenesis,and the promising strategies which are emerging to alleviate the pathogenesis of neurodegenerative diseases.展开更多
Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes...Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner.In Atg5 cells,but not in other essential autophagy genes defecting cells,recycling and retrieval of late endosomal components from hybrid organelles are impaired,causing persistent hybrid organelles and defective formation of late endosomes and lysosomes.Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles.Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.展开更多
Autophagy dysfunction is a common feature in neurodegenerative disorders caused by the accumulation of toxic,aggregate-prone proteins.Increasing evidence have demonstrated that genetic or pharmacological activation of...Autophagy dysfunction is a common feature in neurodegenerative disorders caused by the accumulation of toxic,aggregate-prone proteins.Increasing evidence have demonstrated that genetic or pharmacological activation of transcription factor EB(TFEB),a master regulator of autophagy and lysosomal biogenesis,ameliorates neurotoxicity and rescues neurodegenerative phenotypes in several animal models of neurodegenerative diseases.展开更多
Euphopepluanones F−K(1−4),four new jatrophane type diterpenoids were isolated from the seeds of Euphorbia peplus,along with eight known diterpenoids(5−12).Their structures were established on the basis of extensive sp...Euphopepluanones F−K(1−4),four new jatrophane type diterpenoids were isolated from the seeds of Euphorbia peplus,along with eight known diterpenoids(5−12).Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments.The new compounds 1−4 were assessed for their activities to induce lysosomal biogenesis through LysoTracker Red staining.Compound 2 significantly induced lysosomal biogenesis.In addi-tion,compound 2 could increase the number of LC3 dots,indicating that it could activate the lysosomal-autophagy pathway.展开更多
Alzheimer's disease(AD),characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates,is the most common neurodegenerative disorder with limited therapeutic agents.Autophagy plays...Alzheimer's disease(AD),characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates,is the most common neurodegenerative disorder with limited therapeutic agents.Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates,and transcription factor EB(TFEB)is a master regulator of autophagy and lysosomal biogenesis.Thus,small-molecule autophagy enhancers targeting TFEB hold promise for AD therapy.Here,we found that celastrol,an active ingredient isolated from the root extracts of Tripterygium wilfordii(Lei Gong Teng in Chinese)enhanced TFEB-mediated autophagy and lysosomal biogenesis in vitro and in mouse brains.Importantly,celastrol reduced phosphorylated Tau aggregates and attenuated memory dysfunction and cognitive deficits in P301S Tau and 3xTg mice,two commonly used AD animal models.Mechanistical studies suggest that TFEB-mediated autophagy-lysosomal pathway is responsible for phosphorylated Tau degradation in response to celastrol.Overall,our findings indicate that Celastrol is a novel TFEB activator that promotes the degradation of phosphorylated Tau aggregates and improves memory in AD animal models.Therefore,Celastrol shows potential as a novel agent for the treatment and/or prevention of AD and other tauopathies.展开更多
基金STI2030-Major Projects,No.2022ZD0213000the National Natural Science Foundation of China,Nos.92057103 and 31872820+1 种基金Shanghai Basic Research Program,No.18ZR1 404000State Key Laboratory of Drug Research,No.SIMM2004KF-09 (all to YL)。
文摘Millions of people are suffering from Alzheimer’s disease globally,but there is still no effective treatment for this neurodegenerative disease.Thus,novel therapeutic approaches for Alzheimer’s disease are needed,which requires further evaluation of the regulato ry mechanisms of protein aggregate degradation.Lysosomes are crucial degradative organelles that maintain cellular homeostasis.Transcription factor EB-mediated lysosome biogenesis enhances autolysosomedependent degradation,which subsequently alleviates neurodege nerative diseases,including Alzheimer’s disease,Parkinson’s disease,and Huntington’s disease.In this review,we start by describing the key features of lysosomes,including their roles in nutrient sensing and degradation,and their functional impairments in different neurodegenerative diseases.We also explain the mechanisms—especially the post-translational modifications—which impact transcription factor EB and regulate lysosome biogenesis.Next,we discuss strategies for promoting the degradation of toxic protein aggregates.We describe Proteolysis-Ta rgeting Chimera and related technologies for the targeted degradation of specific proteins.We also introduce a group of LYsosome-Enhancing Compounds,which promote transcription factor EB-mediated lysosome biogenesis and improve learning,memory,and cognitive function in APP-PSEN1 mice.In summary,this review highlights the key aspects of lysosome biology,the mechanisms of transcription factor EB activation and lysosome biogenesis,and the promising strategies which are emerging to alleviate the pathogenesis of neurodegenerative diseases.
基金supported by the National Basic Research Program of China(2010CB833704 and 2011CB910100)the National Natural Science Foundation of China(31030043,30971484,31125018)Tsinghua University(2010THZ0 and 2009THZ03071)to Yu Li
文摘Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner.In Atg5 cells,but not in other essential autophagy genes defecting cells,recycling and retrieval of late endosomal components from hybrid organelles are impaired,causing persistent hybrid organelles and defective formation of late endosomes and lysosomes.Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles.Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.
文摘Autophagy dysfunction is a common feature in neurodegenerative disorders caused by the accumulation of toxic,aggregate-prone proteins.Increasing evidence have demonstrated that genetic or pharmacological activation of transcription factor EB(TFEB),a master regulator of autophagy and lysosomal biogenesis,ameliorates neurotoxicity and rescues neurodegenerative phenotypes in several animal models of neurodegenerative diseases.
基金This research was supported by the National Natural Science Foundation of China under Grant(Numbers 21432010,31872666,82073740)National Key R&D Program of China under Grant(Number 2018YFA0900600)+2 种基金Technological leading talent project of Yunnan(2015HA020)Special Fund for Talent Introduction of Kunming Institute of Botany,CAS(to Xin Fang)and Key R&D Program of Yunnan under Grant(2019ZF011-2).
文摘Euphopepluanones F−K(1−4),four new jatrophane type diterpenoids were isolated from the seeds of Euphorbia peplus,along with eight known diterpenoids(5−12).Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments.The new compounds 1−4 were assessed for their activities to induce lysosomal biogenesis through LysoTracker Red staining.Compound 2 significantly induced lysosomal biogenesis.In addi-tion,compound 2 could increase the number of LC3 dots,indicating that it could activate the lysosomal-autophagy pathway.
基金This study was supported by the research fund from Hong Kong Baptist University(HKBU/RC-IRCs/17-18/03,China)Hong Kong General Research Fund(GRF/HKBU12101417 and GRF/HKBU12100618,China)+2 种基金the National Natural Science Foundation of China(81703487 and 81773926)Shenzhen Science and Technology Innovation Commission(JCYJ20180302174028790,JCYJ20180507184656626,and JCYJ20210324114014039,China)the Hong Kong Health and Medical Research Fund(HMRF17182541 and HMRF17182551,China).
文摘Alzheimer's disease(AD),characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates,is the most common neurodegenerative disorder with limited therapeutic agents.Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates,and transcription factor EB(TFEB)is a master regulator of autophagy and lysosomal biogenesis.Thus,small-molecule autophagy enhancers targeting TFEB hold promise for AD therapy.Here,we found that celastrol,an active ingredient isolated from the root extracts of Tripterygium wilfordii(Lei Gong Teng in Chinese)enhanced TFEB-mediated autophagy and lysosomal biogenesis in vitro and in mouse brains.Importantly,celastrol reduced phosphorylated Tau aggregates and attenuated memory dysfunction and cognitive deficits in P301S Tau and 3xTg mice,two commonly used AD animal models.Mechanistical studies suggest that TFEB-mediated autophagy-lysosomal pathway is responsible for phosphorylated Tau degradation in response to celastrol.Overall,our findings indicate that Celastrol is a novel TFEB activator that promotes the degradation of phosphorylated Tau aggregates and improves memory in AD animal models.Therefore,Celastrol shows potential as a novel agent for the treatment and/or prevention of AD and other tauopathies.