Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expr...Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expression of focal adhesion kinase(FAK),which increases the risk of metastasis and recurrence.Nevertheless,the efficacy of FAK phosphorylation inhibitors is currently limited.Thus,investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis.This study examined the correlation between FAK expression and the prognosis of HCC.Additionally,we explored the impact of FAK degradation on HCC metastasis through wound healing experiments,transwell invasion experiments,and a xenograft tumor model.The expression of proteins related to epithelial-mesenchymal transition(EMT)was measured to elucidate the underlying mechanisms.The results showed that FAK PROTAC can degrade FAK,inhibit the migration and invasion of HCC cells in vitro,and notably decrease the lung metastasis of HCC in vivo.Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited.Consequently,degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis,holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.展开更多
Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosi...Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.展开更多
45,X/46,XY染色体嵌合是临床上比较少见的疾病,具有这种嵌合核型的患者可表现为男性或者女性外观,临床特征相似于特纳综合征(Turner syndrome,Turner综合征),但症状轻于Turner综合征。报告1例因不育就诊的男性表型患者,经G显带染色体核...45,X/46,XY染色体嵌合是临床上比较少见的疾病,具有这种嵌合核型的患者可表现为男性或者女性外观,临床特征相似于特纳综合征(Turner syndrome,Turner综合征),但症状轻于Turner综合征。报告1例因不育就诊的男性表型患者,经G显带染色体核型分析和全基因组拷贝数变异(copy number variation,CNV)技术分析患者外周血提取的DNA,染色体核型诊断为45,X/46,XY嵌合型,外周血淋巴细胞染色体核型共分析50个染色体核型,核型诊断结果为45,X[27]/46,XY[23],全基因组CNV检测结果为-(mosaic)(Y)(64%),Y染色体微缺失检测结果为未见明显异常。45,X/46,XY染色体嵌合型男性表型案例较少,本例患者身材矮小,生殖器畸形,是临床表型较轻的男性表型患者。展开更多
The reactive oxygen species(ROS) generation efficiency is always limited by the extreme tumor microenvironment(TME), leading to unsatisfactory antitumor effects in photodynamic therapy(PDT). As a promising gas therapy...The reactive oxygen species(ROS) generation efficiency is always limited by the extreme tumor microenvironment(TME), leading to unsatisfactory antitumor effects in photodynamic therapy(PDT). As a promising gas therapy molecule, nitric oxide(NO) is independent of oxygen and could even synergize ROS to enhance the therapeutic effect. However, the short half-life, instability, and uncontrollable release of exogenous NO limited the application of tumor synergistic therapy. Herein, we reported a novel kind of red-emissive carbon dots(CDs) that was capable of lysosome-targeted and light-controlled NO delivery. The CDs were synthesized by using metformin and methylene blue(MB) via a hydrothermal method.The obtained metformin-MB CDs(MMCDs) exhibited a higher1O2quantum yield and NO generation efficiency under light emitting diode(LED) light irradiation. Noteworthily, the1O2could further in situ oxidize NO into peroxynitrite anions(ONOO-), which own the higher cytotoxicity against cancer cells.Cell experiments indicate that MMCDs could destruct lysosome membrane integrity and kill almost 80%of Hep G2 cells under light irradiation while very low cytotoxicity in the dark. Moreover, MMCDs significantly decreased tumor volume and weight after phototherapy in hepatoma Hep G2-bearing mice. Our study provides a new strategy for light-controlled NO generation as well as precise lysosome-targeting for enhancement of PDT efficiency.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that cov...The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS.However,the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%,lasting for a mean period of 8 months.One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras(PROTACs),which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity.Accordingly,PROTACs have been developed based on KRAS-or SOS1-directed inhibitors coupled to either von Hippel-Lindau(VHL)or Cereblon(CRBN)ligands that invoke the proteasomal degradation.Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear.The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals.Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase.Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.展开更多
基金supported by the National Natural Science Foundation of China Fund Project(82272956).
文摘Liver cancer is a prevalent malignant cancer,ranking third in terms of mortality rate.Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer.Hepatocellular carcinoma(HCC)has low expression of focal adhesion kinase(FAK),which increases the risk of metastasis and recurrence.Nevertheless,the efficacy of FAK phosphorylation inhibitors is currently limited.Thus,investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis.This study examined the correlation between FAK expression and the prognosis of HCC.Additionally,we explored the impact of FAK degradation on HCC metastasis through wound healing experiments,transwell invasion experiments,and a xenograft tumor model.The expression of proteins related to epithelial-mesenchymal transition(EMT)was measured to elucidate the underlying mechanisms.The results showed that FAK PROTAC can degrade FAK,inhibit the migration and invasion of HCC cells in vitro,and notably decrease the lung metastasis of HCC in vivo.Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited.Consequently,degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis,holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.
基金Supported by the National Science and Technology Major Project of China(2017ZX05035).
文摘Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.
文摘45,X/46,XY染色体嵌合是临床上比较少见的疾病,具有这种嵌合核型的患者可表现为男性或者女性外观,临床特征相似于特纳综合征(Turner syndrome,Turner综合征),但症状轻于Turner综合征。报告1例因不育就诊的男性表型患者,经G显带染色体核型分析和全基因组拷贝数变异(copy number variation,CNV)技术分析患者外周血提取的DNA,染色体核型诊断为45,X/46,XY嵌合型,外周血淋巴细胞染色体核型共分析50个染色体核型,核型诊断结果为45,X[27]/46,XY[23],全基因组CNV检测结果为-(mosaic)(Y)(64%),Y染色体微缺失检测结果为未见明显异常。45,X/46,XY染色体嵌合型男性表型案例较少,本例患者身材矮小,生殖器畸形,是临床表型较轻的男性表型患者。
基金financially supported by the National Natural Science Foundation of China (Nos.52172033 and 22005280)the support from the support of the Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, China+1 种基金the support from the Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, ChinaKey Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, China。
文摘The reactive oxygen species(ROS) generation efficiency is always limited by the extreme tumor microenvironment(TME), leading to unsatisfactory antitumor effects in photodynamic therapy(PDT). As a promising gas therapy molecule, nitric oxide(NO) is independent of oxygen and could even synergize ROS to enhance the therapeutic effect. However, the short half-life, instability, and uncontrollable release of exogenous NO limited the application of tumor synergistic therapy. Herein, we reported a novel kind of red-emissive carbon dots(CDs) that was capable of lysosome-targeted and light-controlled NO delivery. The CDs were synthesized by using metformin and methylene blue(MB) via a hydrothermal method.The obtained metformin-MB CDs(MMCDs) exhibited a higher1O2quantum yield and NO generation efficiency under light emitting diode(LED) light irradiation. Noteworthily, the1O2could further in situ oxidize NO into peroxynitrite anions(ONOO-), which own the higher cytotoxicity against cancer cells.Cell experiments indicate that MMCDs could destruct lysosome membrane integrity and kill almost 80%of Hep G2 cells under light irradiation while very low cytotoxicity in the dark. Moreover, MMCDs significantly decreased tumor volume and weight after phototherapy in hepatoma Hep G2-bearing mice. Our study provides a new strategy for light-controlled NO generation as well as precise lysosome-targeting for enhancement of PDT efficiency.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
文摘The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS.However,the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%,lasting for a mean period of 8 months.One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras(PROTACs),which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity.Accordingly,PROTACs have been developed based on KRAS-or SOS1-directed inhibitors coupled to either von Hippel-Lindau(VHL)or Cereblon(CRBN)ligands that invoke the proteasomal degradation.Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear.The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals.Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase.Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.