期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
Nanomaterials-mediated lysosomal regulation:a robust protein-clearance approach for the treatment of Alzheimer’s disease
1
作者 Mengqi Hao Jianjian Chu +8 位作者 Tinglin Zhang Tong Yin Yuankai Gu Wendanqi Liang Wenbo Ji Jianhua Zhuang Yan Liu Jie Gao You Yin 《Neural Regeneration Research》 SCIE CAS 2025年第2期424-439,共16页
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within... Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease. 展开更多
关键词 Alzheimer’s disease autophagy dysfunction lysosomal acidification lysosomal system nanomaterials neurodegenerative diseases
下载PDF
Enhanced autophagic clearance of amyloid-βvia histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo
2
作者 Zhimin Long Chuanhua Ge +5 位作者 Yueyang Zhao Yuanjie Liu Qinghua Zeng Qing Tang Zhifang Dong Guiqiong He 《Neural Regeneration Research》 SCIE CAS 2025年第9期2633-2644,共12页
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct... Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification. 展开更多
关键词 Alzheimer's disease amyloid-β APP/PS1 mice autophagy cognitive impairment histone deacetylase 6 lysosomal acidification microtubule acetylation valproic acid V-ATPASE
下载PDF
Isoform-and cell-state-specific APOE homeostasis and function 被引量:2
3
作者 Karina Lindner Anne-Claude Gavin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2456-2466,共11页
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing... Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them.Apolipoprotein E polymorphism,combined with environmental stresses and/or age-related alterations,influences the risk of developing late-onset Alzheimer’s disease.In this review,we discuss our current knowledge of how apolipoprotein E homeostasis,i.e.its synthesis,secretion,degradation,and lipidation,is affected in Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease apolipoprotein E autophagy CHOLESTEROL lipid detoxification lipid transport lysosomal failure metabolic impairment TRIACYLGLYCEROL
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
4
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases NEURONS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
Roles of neuronal lysosomes in the etiology of Parkinson’s disease 被引量:1
5
作者 Mattia Volta 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1981-1983,共3页
Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fun... Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease.In this respect,the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics,genomics,and pathologic indications,spanning both familial and idiopathic Parkinson’s disease.Most,if not all,genes linked to familial disease are involved,in a regulatory capacity,in lysosome function(e.g.,LRRK2,alpha-synuclein,VPS35,Parkin,and PINK1).Moreover,the majority of genomic loci associated with increased risk of idiopathic Parkinson’s cluster in lysosome biology and regulation(GBA as the prime example).Lastly,neuropathologic evidence showed alterations in lysosome markers in autoptic material that,coupled to the alpha-synuclein proteinopathy that defines the disease,strongly indicate an alteration in functionality.In this Brief Review article,I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson’s pathogenesis,aiming at a larger vision on the events underlying the onset of the disease.The attempts at targeting autophagy for therapeutic purposes in Parkinson’s have been mostly aimed at“indiscriminately”enhancing its activity to promote the degradation and elimination of aggregate protein accumulations,such as alpha-synuclein Lewy bodies.However,this approach is based on the assumption that protein pathology is the root cause of disease,while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings.In addition,it has been reported that unspecific boosting of autophagy can be detrimental.Thus,it is important to understand the mechanisms of specific autophagy forms and,even more,the adjustment of specific lysosome functionalities.Indeed,lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions.Here,I discuss hypotheses on these possible mechanisms,their links with etiologic and risk factors for Parkinson’s disease,and how they could be targeted for disease-modifying purposes. 展开更多
关键词 ALPHA-SYNUCLEIN autophagy LRRK2 LYSOSOME neuroprotection NEUROTRANSMISSION Parkinson’s disease Rit2 SYNAPSE
下载PDF
Role of lysosomal trafficking regulator in autophagic lysosome reformation in neurons:a disease perspective
6
作者 Prashant Sharma Jenny Serra-Vinardell +1 位作者 Wendy J.Introne May Christine V.Malicdan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期957-958,共2页
Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous ... Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous hydrolytic enzymes,facilitates substrate degradation.Dysfunction in lysosomal processes can lead to abnormal substrate degradation,significantly impacting cellular homeostasis.High energy-demanding cells,such as post-mitotic neurons,are especially vulnerable to these changes,often resulting in neurological diseases.Autophagy,a conserved catabolic process,requires extensive lysosomal utilization.It plays a key role in removing unnecessary intracellular components,ensuring cellular homeostasis,and promoting cell survival during stress conditions such as starvation,infection,or cellular damage. 展开更多
关键词 HOMEOSTASIS LYSOSOMAL removing
下载PDF
Protective effect of Liangxue Huayu decoction on human retinal pigment epithelial cell(ARPE-19)injury induced by hypoxia through autophagy pathway
7
作者 Han-Ran Zheng Yi-Tong Lin +4 位作者 Sheng Chen Zi-Yang Chen Jun-Chang Cao Zhao-Da Ye Yan-Hong Hu 《Pharmacology Discovery》 2024年第1期44-50,共7页
Background:Exploring the protective mechanism of the Liangxue Huayu(LXHY)decoction on human retinal pigment epithelial(RPE)cells induced by hypoxia through the autophagy pathway.Methods:The appropriate LXHY decoction ... Background:Exploring the protective mechanism of the Liangxue Huayu(LXHY)decoction on human retinal pigment epithelial(RPE)cells induced by hypoxia through the autophagy pathway.Methods:The appropriate LXHY decoction concentration was determined by CCK-8.ARPE-19 cells were divided into the normal control group(A group),CoCl_(2)group(B group),3-Methyladenine(3-MA)group(treated with 3-MA(the inhibition of autophagy pathway))(C group),blank serum(BS)group(D group),LXHY drug-contained serum(DCS)group(E group),and Rapamycin(RAP)group[treated with LXHY drug-contained serum combined with rapamycin group(the activation of autophagy pathway)](F group).Counting the number of autophagosomes and autolysosomes in each group of cells under transmission electron microscopy.After infection of cells in each group by mRFP-GFP-LC3 fusion protein adenovirus,the strength of autophagic flux was detected.The mRNA expression levels of LC3 and Beclin-1 were detected by Q-PCR.Results:CCK-8 assay results showed that LXHY DCS could inhibit the cell proliferation of ARPE-19 under hypoxia(all P<0.05).As the transmission electron microscopy assay result showed,compared with the normal control group,the number of autolysosomes was significantly increased in the CoCl_(2)group(P<0.05).Compared with CoCl_(2)group,the number of autolysosomes was significantly reduced the 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.001).As autophagic flux assay result showed,compared with the normal control group,the level of autophagosomes and autolysosomes were significantly risen in CoCl_(2)group(all P<0.001).Compared with the CoCl_(2)group,the level of autophagosomes and autolysosomes were significantly fell down in 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.05).The level of autolysosomes in the LXHY drug-contained serum group was lower than in the blank serum group(P<0.05).Compared with the LXHY drug-contained serum group,the levels of autophagosomes and autolysosomes were significantly risen in the LXHY drug-contained serum combined with the rapamycin group(all P<0.05).As the Q-PCR result showed,compared with the normal control group,the expression of LC3 and Beclin-1 mRNA were significantly reduced in the CoCl_(2)group(all P<0.001).Compared with the CoCl_(2)group,the expression of LC3 mRNA were significantly increased in the 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.001).Beclin-1 mRNA expression was increased significantly(all P<0.001)in the blank serum group and the LXHY drug-contained serum group.And Beclin-1 mRNA expression in the LXHY drug-contained serum group was statistically significant increased than blank serum group(P<0.001).In the LXHY drug-contained serum combined with the rapamycin group,the LC3 and Beclin-1 mRNA expression was reduced significantly compared with the LXHY drug-contained serum group(all P<0.001).Conclusion:The LXHY DCS has the ability to protect the human retinal pigment epithelial cell(ARPE-19)damage under hypoxia through the autophagy pathway. 展开更多
关键词 Liangxue Huayu decoction age-related macular degeneration AUTOPHAGY LYSOSOME AUTOPHAGOSOMES
下载PDF
Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death 被引量:5
8
作者 秦爱萍 张慧灵 秦正红 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第2期117-123,共7页
There are three different types of cell death, including apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). Ischemic neuronal death influences stroke development and progression. Lysos... There are three different types of cell death, including apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). Ischemic neuronal death influences stroke development and progression. Lysosomes are important organelles having an acidic milieu to maintain cellular metabolism by degrading unneeded extra- and intracellular substances. Lysosomal enzymes, including cathepsins and some lipid hydrolases, when secreted following rupture of the lysosomal membrane, can be very harmful to their environment, which results in pathological destruction of cellular structures. Since lysosomes contain catalytic enzymes for degrading proteins, carbohydrates and lipids, it seems natural that they should participate in cellular death and dismantling. In this review, we discuss the recent developments in ischemic neuronal death, and present the possible molecular mechanisms that the lysosomal enzymes participate in the three different types of cell death in ischemic brain damage. Moreover, the research related to the selective cathepsin inhibitors may provide a novel therapeutic target for treating stroke and promoting recovery. 展开更多
关键词 LYSOSOMES CATHEPSIN NECROSIS APOPTOSIS AUTOPHAGY cerebral ischemia
下载PDF
Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein 被引量:103
9
作者 Yang Cao Daniel J Klionsky 《Cell Research》 SCIE CAS CSCD 2007年第10期839-849,共11页
The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Ra... The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell. 展开更多
关键词 LYSOSOME PHOSPHOINOSITIDES protein targeting stress VACUOLE YEAST
下载PDF
Regulating the stability of TGFβ receptors and Smads 被引量:39
10
作者 Peter Lonn Anita Moren Erna Raja Markus Dahl Aristidis Moustakas 《Cell Research》 SCIE CAS CSCD 2009年第1期21-35,共15页
Transforming growth factor β (TGFβ) controls cellular behavior in embryonic and adult tissues. TGFβ binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional sign... Transforming growth factor β (TGFβ) controls cellular behavior in embryonic and adult tissues. TGFβ binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that together regulate gene expression. In this review, mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of TGFβ are presented. We discuss how the activity and duration of TGFβ receptor/Smad signaling can be regulated by post-translational modifications that affect the stability of key proteins in the pathway. We highlight finks between these mechanisms and human diseases, such as tissue fibrosis and cancer. 展开更多
关键词 LYSOSOME phosphorylation PROTEASOME Smad SUMO TGFΒ UBIQUITIN
下载PDF
Overview of macroautophagy regulation in mammalian cells 被引量:68
11
作者 Maryam Mehrpour 《Cell Research》 SCIE CAS CSCD 2010年第7期748-762,共15页
Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light... Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGyrelated genes has greatly increased our knowledge about the mechanism responsible for antophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes. 展开更多
关键词 AUTOPHAGY cell signaling intracellular trafficking LYSOSOMES PROTEOLYSIS
下载PDF
Autophagy: a double-edged sword for neuronal survival after cerebral ischemia 被引量:59
12
作者 Wenqi Chen Yinyi Sun +1 位作者 Kangyong Liu Xiaojiang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1210-1216,共7页
Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether acti- vation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the po... Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether acti- vation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects. 展开更多
关键词 nerve regeneration AUTOPHAGY LYSOSOME AUTOPHAGOSOME neuron cerebral ischemia signaling pathway apoptosis necrosis survival NSFC grant neural regeneration
下载PDF
Autophagy and ethanol-induced liver injury 被引量:12
13
作者 Terrence M Donohue Jr 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第10期1178-1185,共8页
The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, ... The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism. Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients, endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury. 展开更多
关键词 AUTOPHAGY AUTOPHAGOSOME Ethanolmetabolism HEPATOMEGALY LYSOSOMES Signal transduction
下载PDF
Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats 被引量:25
14
作者 Bin Liu Jing Tang +3 位作者 Jinxia Zhang Shiying Li Min Yuan Ruimin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第13期1288-1296,共9页
It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuro- nal injury in a rat model of... It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuro- nal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1, cathepsin B and microtubule-associated protein 1 light chain 3 was elevated compared with that in sham-operated animals. These responses were suppressed in animals that received a single intraperitoneal injection of wortmannin, an autophagy inhibitor, prior to model establishment. The present results confirm that autophagy and autophagy-related proteins are involved in the pathological changes of vascular dementia, and that inhibition of autophagy has neuroprotective effects. 展开更多
关键词 nerve regeneration vascular dementia AUTOPHAGY beclin-l cathepsin B microtbule-associated protein 1 light chain 3 AUTOPHAGOSOMES LYSOSOMES WORTMANNIN neural regeneration
下载PDF
S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3 被引量:14
15
作者 Saeid Ghavami Mehdi Eshragi +7 位作者 Sudharsana R Ande Walter J Chazin Thomas Klonisch Andrew J Halayko Karol D Mcneill Mohammad Hashemi Claus Kerkhoff Marek Los 《Cell Research》 SCIE CAS CSCD 2010年第3期314-331,共18页
The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular... The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular mechanisms involve both programmed cell death I (PCD I, apoptosis) and PCD II (autophagy)-like death. Treatment of cells with S100A8/A9 caused the increase of Beclin-1 expression as well as Atgl2-Atg5 formation. S100A8/A9-induced cell death was partially inhibited by the specific PI3-kinase class Ⅲ inhibitor, 3-methyladenine (3-MA), and by the vacuole H+-ATPase inhibitor, bafilomycin-A1 (Baf-A1). S100A8/A9 provoked the translocation of BNIP3, a BH3 only pro-apoptotic Bcl2 family member, to mitochondria. Consistent with this finding, ATM-BNIP3 overexpression partially inhibited S100A8/A9-induced cell death, decreased reactive oxygen species (ROS) generation, and partially pro- tected against the decrease in mitochondrial transmembrane potential in S100A8/A9-treated ceils. In addition, either ATM-BNIP3 overexpression or N-acetyl-L-cysteine co-treatment decreased lysosomal activation in cells treated with S100A8/A9. Our data indicate that S100A8/A9-promoted cell death occurs through the cross-talk of mitochondria and lysosomes via ROS and the process involves BNIP3. 展开更多
关键词 S100A8/A9 CALPROTECTIN lysosomal activation mitochondrial membrane potential BNIP3 BECLIN-1
下载PDF
Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress 被引量:6
16
作者 Si-Wei ZHANG Jiang-Nan FENG +2 位作者 Yi CAO Li-Ping MENG Shu-Lin WANG 《Zoological Research》 CAS CSCD 2015年第3期167-173,共7页
Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species(ROS) generated by cellular stress. Autophagy typically enhances ce... Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species(ROS) generated by cellular stress. Autophagy typically enhances cell survival, but it may also act to promote cell death under certain conditions. The mechanism underlying this paradox, however, remains unclear. We showed that Tetrahymena cells exerted increased membranebound vacuoles characteristic of autophagy followed by autophagic cell death(referred to as cell death with autophagy) after exposure to hydrogen peroxide. Inhibition of autophagy by chloroquine or 3-methyladenine significantly augmented autophagic cell death induced by hydrogen peroxide. Blockage of the mitochondrial electron transport chain or starvation triggered activation of autophagy followed by cell death by inducing the production of ROS due to the loss of mitochondrial membrane potential. This indicated a regulatory role of mitochondrial ROS in programming autophagy and autophagic cell death in Tetrahymena. Importantly, suppression of autophagy enhanced autophagic cell death in Tetrahymena in response to elevated ROS production from starvation, and this was reversed by antioxidants. Therefore, our results suggest that autophagy was activated upon oxidative stress to prevent the initiation of autophagic cell death in Tetrahymena until the accumulation of ROS passed the point of no return, leading to delayed cell death in Tetrahymena. 展开更多
关键词 AUTOPHAGY Autophagic cell death LYSOSOME MITOCHONDRIA Reactive oxygen species TETRAHYMENA
下载PDF
Efficacy of boswellic acid on lysosomal acid hydrolases,lipid peroxidation and anti-oxidant status in gouty arthritic mice 被引量:6
17
作者 Evan Prince Sabina Haridas Indu Mahaboobkhan Rasool 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2012年第2期128-133,共6页
Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice.Methods:The mice were divided into four experimental groups.GroupⅠserved as control;mice in groupⅡwe... Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice.Methods:The mice were divided into four experimental groups.GroupⅠserved as control;mice in groupⅡwere injected with monosodium urate crystal;groupⅢconsisted of monosodium urate crystal-induced mice who were treated with boswellic acid(30mg/kg/b.w.);groupⅣcomprised monosodium urate crystal-induced mice who were treated with indomethacin(3mg/kg/b.w.).Paw volume and levels/activities of lysosomal enzymes,lipid peroxidation,anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice.In addition,the levels ofβ-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes(PMNL)in vitro.Results:The activities of lysosomal enzymes,lipid peroxidation,and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice,whereas the activities of antioxidant status were in turn decreased.However,these changes were modulated to near normal levels upon boswellic acid administration.In vitro,boswellic acid reduced the level ofβ-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells.Conclusions:The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid,which was already well established by several investigators. 展开更多
关键词 Boswellic ACID GOUTY arthritis Indomethacin LYSOSOMAL enzymes POLYMORPHONUCLEAR LEUCOCYTES Monosodium urate Lipid peroxidation Antioxidant STATUS Anti-inflammatory effect Antiarthritic effect Inflammation
下载PDF
The emerging role of autophagic-lysosomal dysfunction in Gaucher disease and Parkinson's disease 被引量:5
18
作者 Kerri J.Kinghorn Amir M.Asghari Jorge Iván Castillo-Quan 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期380-384,共5页
Gaucher disease(GD),the commonest lysosomal storage disorder,results from the lack or functional deficiency of glucocerebrosidase(GCase) secondary to mutations in the GBA1 gene.There is an established association ... Gaucher disease(GD),the commonest lysosomal storage disorder,results from the lack or functional deficiency of glucocerebrosidase(GCase) secondary to mutations in the GBA1 gene.There is an established association between GBA1 mutations and Parkinson's disease(PD),and indeed GBA1 mutations are now considered to be the greatest genetic risk factor for PD.Impaired lysosomal-autophagic degradation of cellular proteins,including α-synuclein(α-syn),is implicated in the pathogenesis of PD,and there is increasing evidence for this also in GD and GBA1-PD.Indeed we have recently shown in a Drosophila model lacking neuronal GCase,that there are clear lysosomal-autophagic defects in association with synaptic loss and neurodegeneration.In addition,we demonstrated alterations in mechanistic target of rapamycin complex 1(mTORC1) signaling and functional rescue of the lifespan,locomotor defects and hypersensitivity to oxidative stress on treatment of GCase-deficient flies with the mT OR inhibitor rapamycin.Moreover,a number of other recent studies have shown autophagy-lysosomal system(ALS) dysfunction,with specific defects in both chaperone-mediated autophagy(CMA),as well as macroautophagy,in GD and GBA1-PD model systems.Lastly we discuss the possible therapeutic benefits of inhibiting mT OR using drugs such as rapamycin to reverse the autophagy defects in GD and PD. 展开更多
关键词 Gaucher disease Parkinson's disease DROSOPHILA autophagy LYSOSOME GLUCOCEREBROSIDASE GBA
下载PDF
Taking out the garbage:cathepsin D and calcineurin in neurodegeneration 被引量:5
19
作者 Andreas Aufschnaiter Verena Kohler Sabrina Büttner 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1776-1779,共4页
Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to ma... Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathep- sin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurode- generative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease. 展开更多
关键词 NEURODEGENERATION Parkinson’s disease Α-SYNUCLEIN cathepsin D CALCINEURIN RETROMER yeast LYSOSOME endosomal sorting
下载PDF
Microglia and astrocytes mediate synapse engulfment in a MER tyrosine kinase-dependent manner after traumatic brain injury 被引量:4
20
作者 Hui Shen Xiao-Jing Shi +6 位作者 Lin Qi Cheng Wang Muyassar Mamtilahun Zhi-Jun Zhang Won-Suk Chung Guo-Yuan Yang Yao-Hui Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1770-1776,共7页
Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is ... Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is also active in traumatic brain injury.In this study,we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury.Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function.In addition,in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice,the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased,and the total number of dendritic spines was increased.Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis,and inhibiting this process could be a new strategy for treating traumatic brain injury. 展开更多
关键词 animal model astrocyte dendritic spines LYSOSOME macrophage MER proto-oncokinase MICROGLIA neurologic function phagocytosis synapse engulfment traumatic brain injury
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部