There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commerci...There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commercial 3.3/ 5V 0.5μm n-well CMOS process without adding any process steps using n-well and p-channel stops. High current and highvoltage transistors with breakdown voltages between 23 and 35V for the nMOS transistors with different laydut parameters and 19V for the pMOS transistors are achieved. This paper also presents the insulation technology and characterization results for these high-voltage devices.展开更多
In this paper, a new voltage-mode (VM), all-pass filter utilizing two second-generation current conveyors and tow differential difference current conveyors (DDCCs) is proposed. This filter uses a number of passive ele...In this paper, a new voltage-mode (VM), all-pass filter utilizing two second-generation current conveyors and tow differential difference current conveyors (DDCCs) is proposed. This filter uses a number of passive elements grounded capacitor. This structure of filter is used to realize a quadrature oscillator. The proposed circuits employ tow optimized differential difference translinear second generation current conveyers (DDCCII). These structures are simulated using the spice simulation in the ADS software and CMOS 0.18 μm process of TSMC technology to confirm the theory. The pole frequency can be tuned in the range of [11.6 - 39.6 MHz] by a simple variation of a DC current.展开更多
文摘There is growing interest in developing high-voltage MOSFET devices that can be integrated with low-voltage CMOS digital and analog circuits. In this paper,high-voltage nand p-type MOSFETs are fabricated in a commercial 3.3/ 5V 0.5μm n-well CMOS process without adding any process steps using n-well and p-channel stops. High current and highvoltage transistors with breakdown voltages between 23 and 35V for the nMOS transistors with different laydut parameters and 19V for the pMOS transistors are achieved. This paper also presents the insulation technology and characterization results for these high-voltage devices.
文摘In this paper, a new voltage-mode (VM), all-pass filter utilizing two second-generation current conveyors and tow differential difference current conveyors (DDCCs) is proposed. This filter uses a number of passive elements grounded capacitor. This structure of filter is used to realize a quadrature oscillator. The proposed circuits employ tow optimized differential difference translinear second generation current conveyers (DDCCII). These structures are simulated using the spice simulation in the ADS software and CMOS 0.18 μm process of TSMC technology to confirm the theory. The pole frequency can be tuned in the range of [11.6 - 39.6 MHz] by a simple variation of a DC current.