Let {εt;t ∈ Z} be a sequence of m-dependent B-valued random elements with mean zeros and finite second moment. {a3;j ∈ Z} is a sequence of real numbers satisfying ∑j=-∞^∞|aj| 〈 ∞. Define a moving average pro...Let {εt;t ∈ Z} be a sequence of m-dependent B-valued random elements with mean zeros and finite second moment. {a3;j ∈ Z} is a sequence of real numbers satisfying ∑j=-∞^∞|aj| 〈 ∞. Define a moving average process Xt = ∑j=-∞^∞aj+tEj,t ≥ 1, and Sn = ∑t=1^n Xt,n ≥ 1. In this article, by using the weak convergence theorem of { Sn/√ n _〉 1}, we study the precise asymptotics of the complete convergence for the sequence {Xt; t ∈ N}.展开更多
基金supported by National Natural Science Foundation of China (No. 10571073)
文摘Let {εt;t ∈ Z} be a sequence of m-dependent B-valued random elements with mean zeros and finite second moment. {a3;j ∈ Z} is a sequence of real numbers satisfying ∑j=-∞^∞|aj| 〈 ∞. Define a moving average process Xt = ∑j=-∞^∞aj+tEj,t ≥ 1, and Sn = ∑t=1^n Xt,n ≥ 1. In this article, by using the weak convergence theorem of { Sn/√ n _〉 1}, we study the precise asymptotics of the complete convergence for the sequence {Xt; t ∈ N}.