The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum ...The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.展开更多
Maximum power point tracking (MPPT) controllers play an important role in photovoltaic systems. They maximize the output power of a PV array for a given set of conditions. This paper presents an overview of the differ...Maximum power point tracking (MPPT) controllers play an important role in photovoltaic systems. They maximize the output power of a PV array for a given set of conditions. This paper presents an overview of the different MPPT techniques. Each technique is evaluated on its ability to detect multiple maxima, convergence speed, ease of implementation, efficiency over a wide output power range, and cost of implementation. The perturbation and observation (P & O), and incremental conductance (IC) algorithms are widely used techniques, with many variants and optimization techniques reported. For this reason, this paper evaluates the performance of these two common approaches from a dynamic and steady state perspective.展开更多
In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of...In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.展开更多
The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in sever...The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in several literatures. In such context, there is an increasing interest in developing a more appropriate and effective maximum power point tracking control methodology to ensure that the photovoltaic arrays guarantee as much of their available output power as possible to the load for any temperature and solar radiation levels. In this paper, theoretical details of the work, carried out to develop and implement a maximum power point tracking controller using neural networks for a stand-alone photovoltaic system, are presented. Attention has been also paid to the command of the power converter to achieve maximum power point tracking. Simulations results, using Matlab/Simulink software, presented for this approach under rapid variation of insolation and temperature conditions, confirm the effectiveness of the proposed method both in terms of efficiency and fast response time. Negligible oscillations around the maximum power point and easy implementation are the main advantages of the proposed maximum power point tracking (MPPT) control method.展开更多
Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV pane...Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.展开更多
This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. Th...This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. The energy storage elements incorporated in the SEPIC converter possess parasitic resistances. Although ideal components significantly simplifies model development, but neglecting the parasitic effects in models may sometimes lead to failure in predicting first scale stability and actual performance. Therefore, the effects of parasitics have been taken into consideration for improving the model accuracy, stability, robustness and dynamic performance analysis of the converter. Detail mathematical model of SEPIC converter including inductive parasitic has been developed. The performance of the converter in tracking MPP at different irradiance levels has been analyzed for variation in parasitic resistance. The converter efficiency has been found above 83% for insolation level of 600 W/m2 when the parasitic resistance in the energy storage element has been ignored. However, as the parasitic resistance of both of the inductor has increased to 1 ohm, a fraction of the power managed by the converter has dissipated;as a result the efficiency of the converter has reduced to 78% for the same insolation profile. Although the increasing value of the parasitic has assisted the converter to converge quickly to reach the maximum power point. Furthermore it has also been observed that the peak to peak load current ripple is reduced. The obtained simulation results have validated the competent of the MPPT converter model.展开更多
为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame ...为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。展开更多
针对传统电导增量INC(incremental conductance)算法在跟踪最大功率点的过程中无法兼顾跟踪速度与稳态精度的问题,以及传统变步长算法在光照变化时容易发生误判的问题,提出了一种新型的自适应变步长INC算法。光照强度变化较大时,利用负...针对传统电导增量INC(incremental conductance)算法在跟踪最大功率点的过程中无法兼顾跟踪速度与稳态精度的问题,以及传统变步长算法在光照变化时容易发生误判的问题,提出了一种新型的自适应变步长INC算法。光照强度变化较大时,利用负载曲线与I-V特性曲线的工作原理,在暂稳态和非稳态下都可以根据最大功率点跟踪MPPT(maximum power point tracking)采样电流的变化,自适应调节跟踪速度;光照强度变化较小时,能够根据输出电压与功率的变化自适应减小步长,提高稳态精度。追踪速度是传统算法的9.3倍,是现有变步长算法的4.2倍,有效减少了光照强度变化带来的功率损失。展开更多
文摘The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.
文摘Maximum power point tracking (MPPT) controllers play an important role in photovoltaic systems. They maximize the output power of a PV array for a given set of conditions. This paper presents an overview of the different MPPT techniques. Each technique is evaluated on its ability to detect multiple maxima, convergence speed, ease of implementation, efficiency over a wide output power range, and cost of implementation. The perturbation and observation (P & O), and incremental conductance (IC) algorithms are widely used techniques, with many variants and optimization techniques reported. For this reason, this paper evaluates the performance of these two common approaches from a dynamic and steady state perspective.
基金supported by the National Natural Science Foundation of China (Grant No.20576071)
文摘In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.
基金supported by the National Natural Science Foundation of China(61203129,61174038,61473151,51507080)the Fundamental Research Funds for the Central Universities(30915011104,30920130121010,30920140112005)
文摘The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in several literatures. In such context, there is an increasing interest in developing a more appropriate and effective maximum power point tracking control methodology to ensure that the photovoltaic arrays guarantee as much of their available output power as possible to the load for any temperature and solar radiation levels. In this paper, theoretical details of the work, carried out to develop and implement a maximum power point tracking controller using neural networks for a stand-alone photovoltaic system, are presented. Attention has been also paid to the command of the power converter to achieve maximum power point tracking. Simulations results, using Matlab/Simulink software, presented for this approach under rapid variation of insolation and temperature conditions, confirm the effectiveness of the proposed method both in terms of efficiency and fast response time. Negligible oscillations around the maximum power point and easy implementation are the main advantages of the proposed maximum power point tracking (MPPT) control method.
文摘Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.
文摘This paper presents an analysis of the effect of parasitic resistances on the performance of DC-DC Single Ended Pri- mary Inductor Converter (SEPIC) in photovoltaic maximum power point tracking (MPPT) applications. The energy storage elements incorporated in the SEPIC converter possess parasitic resistances. Although ideal components significantly simplifies model development, but neglecting the parasitic effects in models may sometimes lead to failure in predicting first scale stability and actual performance. Therefore, the effects of parasitics have been taken into consideration for improving the model accuracy, stability, robustness and dynamic performance analysis of the converter. Detail mathematical model of SEPIC converter including inductive parasitic has been developed. The performance of the converter in tracking MPP at different irradiance levels has been analyzed for variation in parasitic resistance. The converter efficiency has been found above 83% for insolation level of 600 W/m2 when the parasitic resistance in the energy storage element has been ignored. However, as the parasitic resistance of both of the inductor has increased to 1 ohm, a fraction of the power managed by the converter has dissipated;as a result the efficiency of the converter has reduced to 78% for the same insolation profile. Although the increasing value of the parasitic has assisted the converter to converge quickly to reach the maximum power point. Furthermore it has also been observed that the peak to peak load current ripple is reduced. The obtained simulation results have validated the competent of the MPPT converter model.
文摘为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。
文摘针对传统电导增量INC(incremental conductance)算法在跟踪最大功率点的过程中无法兼顾跟踪速度与稳态精度的问题,以及传统变步长算法在光照变化时容易发生误判的问题,提出了一种新型的自适应变步长INC算法。光照强度变化较大时,利用负载曲线与I-V特性曲线的工作原理,在暂稳态和非稳态下都可以根据最大功率点跟踪MPPT(maximum power point tracking)采样电流的变化,自适应调节跟踪速度;光照强度变化较小时,能够根据输出电压与功率的变化自适应减小步长,提高稳态精度。追踪速度是传统算法的9.3倍,是现有变步长算法的4.2倍,有效减少了光照强度变化带来的功率损失。