Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton so...In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse sca...N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.展开更多
In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows...In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.展开更多
The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifest...The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved ...Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.展开更多
In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coe...In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.展开更多
In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbol...In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.展开更多
In this paper,dependent and independent variable transformations are introduced to solve the negativemKdV equation systematically by using the knowledge of elliptic equation and Jacobian elliptic functions.It is shown...In this paper,dependent and independent variable transformations are introduced to solve the negativemKdV equation systematically by using the knowledge of elliptic equation and Jacobian elliptic functions.It is shownthat different kinds of solutions can be obtained to the negative mKdV equation,including breather lattice solution andperiodic wave solution.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
The isospectral problem of the second mKdV equation is found out firstly. It follows that the strong hereditary symmetry and the Hamiltonian structure of the second mKdV equation are presented.
This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It succes...This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.展开更多
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal cohere...The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.展开更多
With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV...With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV equation are obtained,which contain new solitary wave solutions and periodic wave solutions.This approach can also be applied to other nonlinear evolution equations.展开更多
A modified version of the bilinear Bcklund transformation for the MKdV equation was given, with which some new solutions of the MKdV equation are obtained. The approach used here is general and can be applied to other...A modified version of the bilinear Bcklund transformation for the MKdV equation was given, with which some new solutions of the MKdV equation are obtained. The approach used here is general and can be applied to other soliton equations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
文摘In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070,10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers+1 种基金Shanghai Leading Academic Discipline Project under Grant No.J50101 the President Foundation of East China Institute of Technology under Grant No.DHXK0810
文摘N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.
基金The project sponsored by the Education Depart ment of Inner Mongolia(NJZY:08005,NJ:09066)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOOCAW0805)the Science of Inner Mongolia University of Technology(X200933)
文摘The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
文摘Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.
基金supported by the Scientific Research Foundation for the Returned Over-seas Chinese Scholarthe Natural Science Foundation of the Inner Mongolia(No.20040802112)
文摘In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.
基金The project supported by the Education Foundation of Zhejiang Province of China under Grant No. 20030557 and the Science Foundation of Zhejiang Forestry College
文摘In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.
基金Supported by National Natural Science Foundation of China under Grant No.90511009National Basic Research Program of China under Grant Nos.2006CB403600 and 2005CB42204
文摘In this paper,dependent and independent variable transformations are introduced to solve the negativemKdV equation systematically by using the knowledge of elliptic equation and Jacobian elliptic functions.It is shownthat different kinds of solutions can be obtained to the negative mKdV equation,including breather lattice solution andperiodic wave solution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371070, the Youth Foundation of Shanghai Education Committee and the Special Funds for Major Specialities of Shanghai Education Committee .The first author expresses her appreciations to the soliton disquisitive team of Shanghai University for their useful discussions.
文摘The isospectral problem of the second mKdV equation is found out firstly. It follows that the strong hereditary symmetry and the Hamiltonian structure of the second mKdV equation are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575082 and 10247008).
文摘This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.
基金supported by the National Natural Science Foundations of China (Grant Nos 10735030,10475055,10675065 and 90503006)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金PCSIRT (Grant No IRT0734)the Research Fund of Postdoctoral of China (Grant No 20070410727)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120)
文摘The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
基金Supported by the National Key Basic Research Project Foundation of China(G1 9980 30 60 0 ) and theHigher Education Doctoral Fo
文摘With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV equation are obtained,which contain new solitary wave solutions and periodic wave solutions.This approach can also be applied to other nonlinear evolution equations.
文摘A modified version of the bilinear Bcklund transformation for the MKdV equation was given, with which some new solutions of the MKdV equation are obtained. The approach used here is general and can be applied to other soliton equations.