期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage
1
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/AKT/mtor signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
ROR2 promotes invasion and chemoresistance of triple-negative breast cancer cells by activating PI3K/AKT/mTOR signaling
2
作者 XIA DA HAN GE +4 位作者 JUNFENG SHI CHUNHUA ZHU GUOZHU WANG YUAN FANG JIN XU 《Oncology Research》 SCIE 2024年第7期1209-1219,共11页
Objective:This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2(ROR2)in triple-negative breast cancer(TNBC).Methods:ROR2 expression in primary TNBC and metastatic TNBC tissues was... Objective:This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2(ROR2)in triple-negative breast cancer(TNBC).Methods:ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR.ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis.The migration,invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined.Results:ROR2 expression was high in metastatic TNBC tissues.ROR2 knockdown suppressed the migration,invasion and chemoresistance of TNBC cells.ROR2 overexpression in MDA-MB-435 cells promoted the migration,invasion,and chemoresistance.Moreover,ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin.ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells.Conclusion:ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling. 展开更多
关键词 Receptor tyrosine kinase-like orphan receptor 2 Triplet-negative breast cancer Proliferation Apoptosis PI3K/AKT/mtor signaling Metastasis
下载PDF
Antitumor activity of miR-188-3p in gastric cancer is achieved by targeting CBL expression and inactivating the AKT/mTOR signaling
3
作者 Jian-Jiao Lin Bao-Hua Luo +5 位作者 Tao Su Qiong Yang Qin-Fei Zhang Wei-Yu Dai Yan Liu Li Xiang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第8期1384-1399,共16页
BACKGROUND Altered miR-188-3p expression has been observed in various human cancers.AIM To investigate the miR-188-3p expression,its roles,and underlying molecular events in gastric cancer.METHODS Fifty gastric cancer... BACKGROUND Altered miR-188-3p expression has been observed in various human cancers.AIM To investigate the miR-188-3p expression,its roles,and underlying molecular events in gastric cancer.METHODS Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression.Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays.The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay.A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival.A nude mouse tumor cell xenograft assay was used to confirm the in vitro data.RESULTS MiR-188-3p was found to be lower in the plasma of gastric cancer patients,tissues,and cell lines compared to their healthy counterparts.It was associated with overall survival of gastric cancer patients(P<0.001),tumor differentiation(P<0.001),lymph node metastasis(P=0.033),tumor node metastasis stage(I/II vs III/IV,P=0.024),and American Joint Committee on Cancer stage(I/II vs III/IV,P=0.03).Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy.CBL was identified as a direct target of miR-188-3p,with its expression antagonizing the effects of miR-188-3p on gastric cancer(GC)cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway.The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer.CONCLUSION The current data provides ex vivo,in vitro,and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC. 展开更多
关键词 Gastric cancer miR-188-3p Tumor cell proliferation Autophagy AKT/mtor signaling pathway CBL expression
下载PDF
A study of acupoint specificity and mechanism of electroacupuncture intervention on chronic colitis in rats based on PI3K/AKT/mTOR signaling pathway
4
作者 TANG Kun-peng LV Jia-qi +4 位作者 WEN Tan ZHANG Chun-qing MA Meng-na REN Hua-shan YAN Li-ping 《Journal of Hainan Medical University》 CAS 2023年第9期33-39,共7页
Objective:This study aimed to elucidate the differences in effects and mechanisms of action of electric-needle therapy at Tian Shu(ST25),Da Chang Shu(BL25),Zu San Li(ST36)and Shang Ju Xu(ST37)acupoints on chronic expe... Objective:This study aimed to elucidate the differences in effects and mechanisms of action of electric-needle therapy at Tian Shu(ST25),Da Chang Shu(BL25),Zu San Li(ST36)and Shang Ju Xu(ST37)acupoints on chronic experimental colitis in rats through the PI3K/AKT/mTOR signaling pathway.Methods:Sixty pathogen-free SD rats were randomly assigned to six groups:the normal,model,Tian Shu(ST25),Da Chang Shu(BL25),Zu San Li(ST36)and Shang Ju Xu(ST37)groups,each with 10 rats.Chronic colitis was induced in rats by combining immunization and local stimulation.After model establishment,electrical needle intervention combined with dispersing wave of 2 Hz/50 Hz with a current intensity of 2 mA once daily for 20 min was applied on acupoints of each group.Subsequently,the inflammation of colonic mucosa and serum levels of inflammatory factors(IL-23,IL-17,IL-10)were observed;ELISA was used to detect mRNA expressions of PI3K,Akt and mTOR in colitic tissues by RT-PCR as well as protein content of p-PI3k/PI3K,p-Akt/Akt,and p-mTOR/mTOR in colitic tissues by Western blotting.Result:Compared with the normal group,the model rats showed a poor general condition,serious damage to the colonic mucosa with a large number of inflammatory cells infiltration.The serum IL-23 and IL-17 expressions were significantly increased(P<0.01),while the serum IL-10 expression was significantly decreased(P<0.01);the mRNA and protein expressions of PI3K,Akt,mTOR and p-PI3K,p-Akt and p-mTOR were significantly increased(P<0.05,P<0.01).Compared with the model group,the pathological slices of rats in each acupoints intervention group showed obvious improvement of colitis inflammatory reaction and tissue damage;the serological levels of IL-23 and IL-17 were significantly reduced(P<0.01),while the serology level of IL-10 was significantly increased(P<0.01);the expressions of PI3K,Akt,mTOR mRNA and p-PI3K,p-Akt,p-mTOR proteins were significantly decreased(P<0.05,P<0.01).Compared with Tian Shu(ST25),Da Chang Shu(BL25),Zu San Li(ST36)groups,the recovery degree of mucosa layers in Shang Ju Xu(ST37)group was closer to that of normal group,and the curative effect was relatively the best;in terms of serological levels of IL-23 and IL-17,the Shang Ju Xu(ST37)group was significantly lower(P<0.05),while the level of IL-10 was significantly higher(P<0.01);the expressions of PI3K,Akt,mTOR mRNA and p-PI3K,p-Akt,p-mTOR proteins were significantly decreased(P<0.05,P<0.01).Conclusion:Results indicate that electrical acupuncture at Tian Shu(ST25),Da Chang Shu(BL25),Zu San Li(ST36)and Shang Ju Xu(ST37)show similar effects in relieving the colitis-induced damage in the mucosa of chronic colitis rats,as well as inflammatory response.Among them,Shang Ju Xu(ST25)has a superior overall effect in treating chronic colitis compared to Tian Shu(ST25),Da Chang Shu(BL25)and Zu San Li(ST36).The mechanism may be related to inhibition of PI3K/Akt/mTOR signaling pathway. 展开更多
关键词 ELECTROACUPUNCTURE Chronic colitis Acupoint specificity PI3K/Akt/mtor signal path
下载PDF
Bta-miR-34b controls milk fat biosynthesis via the Akt/mTOR signaling pathway by targeting RAI14 in bovine mammary epithelial cells 被引量:1
5
作者 Yujuan Wang Xiaoyu Wang +3 位作者 Meng Wang Li Zhang Linsen Zan Wucai Yang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第4期1598-1609,共12页
Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression o... Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression of their mRNA targets and are involved in downstream signaling pathways that control several biological processes,including milk fat synthesis.miR-34b is a member of the miR-34 miRNA cluster,which is differentially expressed in the mammary gland tissue of dairy cows during lactation and dry periods.Previous studies have indicated miR-34b is a potential candidate gene that plays a decisive role in regulating milk fat synthesis;therefore,it is important to focus on miR-34b and investigate its regulatory effect on the biosynthesis of milk fat in bovine mammary epithelial cells(BMECs).Results:In this study,elevated miR-34b levels reduced milk fat synthesis,upregulated 1,999 genes,and downregulated 2,009 genes in BMECs.Moreover,Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis of differentially expressed genes suggested that miR-34b may play an inhibitory role in milk fat synthesis via the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)signaling pathway by reducing phosphorylation levels.Notably,the mTOR activator MHY1485 rescued the inhibitory effect of miR-34b.Furthermore,we demonstrated that retinoic acid-induced protein 14(RAI14)is a target of miR-34b via TargetScan and immunofluorescence assays.RAI14 mRNA and protein levels were significantly decreased by the miR-34b mimic and increased by the miR-34b inhibitor.Moreover,the reduction in RAI14 levels led to the inhibition of the Akt/mTOR signaling pathway.Conclusions:Overall,our results identified a miR-34b-RAI14-Akt/mTOR regulatory network,while also providing a theoretical basis for the molecular breeding of dairy cows. 展开更多
关键词 Akt/mtor signaling pathway Bovine mammary epithelial cells Milk fat MiR-34b RAI14
下载PDF
Celastrol Induces Apoptosis and Autophagy via the AKT/mTOR Signaling Pathway in the Pituitary ACTH-secreting Adenoma Cells 被引量:1
6
作者 Zhi CAI Bin QIAN +3 位作者 Jing PANG Zhou-bin TAN Kai ZHAO Ting LEI 《Current Medical Science》 SCIE CAS 2022年第2期387-396,共10页
Objective Pituitary adrenocorticotropic hormone(ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple sy... Objective Pituitary adrenocorticotropic hormone(ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple systems.Previous studies have shown that celastrol has antitumor effects on a variety of tumor cells via the AKT/mTOR signaling.However,whether celastrol has pronounced antitumor effects on pituitary ACTH-secreting adenoma is unclear.This study aimed to identify a new effective therapeutic drug for pituitary ACTH-secreting adenoma.Methods Mouse pituitary ACTH-secreting adenoma cells(AtT20 cells)were used as an experimental model in vitro and to establish a xenograft tumor model in mice.Cells and animals were administered doses of celastrol at various levels.The effects of celastrol on cell viability,migration,apoptosis and autophagy were then examined.Finally,the potential involvement of AKT/mTOR signaling in celastrol’s mechanism was assessed.Results Celastrol inhibited the proliferation and migration of pituitary adenoma cells in a time-and concentration-dependent manner.It blocked AtT20 cells in the G0/G1 phase,and induced apoptosis and autophagy by downregulating the AKT/mTOR signaling pathway.Similar results were obtained in mice.Conclusion Celastrol exerts potent antitumor effects on ACTH-secreting adenoma by downregulating the AKT/mTOR signaling in vitro and in vivo. 展开更多
关键词 pituitary adenoma CELASTROL AUTOPHAGY APOPTOSIS AKT/mtor signaling pathway
下载PDF
The role of mTOR signaling pathway in regulating autophagy in liver injury of TX mice with Wilson’s disease 被引量:1
7
作者 PENG WU MANLI GAO +5 位作者 JIANJIAN DONG CHENCHEN XU BO LI XUN WANG YONGZHU HAN NAN CHENG 《BIOCELL》 SCIE 2021年第1期109-117,共9页
Wilson disease(WD),known as hepatolenticular degeneration(HLD),is a treatable autosomal recessive disorder of copper metabolism.Because copper deposits in the liver first,the liver is not only the original defective o... Wilson disease(WD),known as hepatolenticular degeneration(HLD),is a treatable autosomal recessive disorder of copper metabolism.Because copper deposits in the liver first,the liver is not only the original defective organ but also the most affected organ.The liver injury is also one of the main causes of death throughout the course of the disease.Therefore,the treatment of liver injury is the main task of WD treatment,which is of great significance to improve the prognosis of patients.Autophagy is a process that promotes cell survival through degradation,recycling,and absorption in order to maintain the normal physiological function of cells,while excessive autophagy can aggravate cell death.In view of the abnormal damage of liver cells in patients with WD,which may be related to the change of autophagy level,in this study,we established an animal model of WD through toxic milk(TX)mice,observed the change of autophagy level in the liver,and observed the change of liver damage in mice after treatment with autophagy inhibitors.It was found that the mTOR signaling pathway was activated and autophagy was inhibited in Wilson mouse liver.After treatment with rapamycin,the autophagy level of mice liver was upregulated,and the copper content of mice liver was reduced,and the damage was alleviated.TX mouse hepatocytes were isolated,after using siRNA to interfere with mTOR expression,the copper accumulation was significantly reduced,which was the same with RAPA treatment.The results showed that in TX mice,the damage caused by copper accumulation in the liver may be related to the decrease of autophagy level caused by the activation of the mTOR signaling pathway.Our findings suggested that RAPA or the use of siRNA targeting mTOR may have potential applications in the treatment of Wilson’s disease. 展开更多
关键词 Wilson disease(WD) TX mice AUTOPHAGY mtor signaling pathway
下载PDF
CircRNA ATF6 promotes ovarian cancer cell progression by activating PTEN/mTOR signaling pathway 被引量:1
8
作者 LIETING MA MIAOLING LI XINGLONG ZHENG 《BIOCELL》 SCIE 2021年第2期317-321,共5页
Ovarian cancer is a malignant cancer type and affects women’s lives in the world.Circular RNAs(circRNAs)have been involved with the progression of cancers.In our study,we are going to explore the functions of circATF... Ovarian cancer is a malignant cancer type and affects women’s lives in the world.Circular RNAs(circRNAs)have been involved with the progression of cancers.In our study,we are going to explore the functions of circATF6 in ovarian cancer.The qRT-PCR assay was used to detect expressions of genes.Actinomycin D and RNase R treatment were implemented to verify the circular RNA character of circATF6.Besides,Cell proliferation was assessed by colony formation assay and EdU assay.Silenced circATF6 could reduce the proliferation of ovarian cancer cells.In addition,inhibited circATF6 could promote the cell apoptosis and inhibit related proteins in PTEN/mTOR signaling pathway in ovarian cancer.In conclusion,CircRNA ATF6 promotes ovarian cancer cell progression by activating PTEN/mTOR signaling pathway. 展开更多
关键词 CircRNA ATF6 PTEN/mtor signaling pathway Ovarian cancer
下载PDF
MiR-30e-3p inhibits gastric cancer development by negatively regulating THO complex 2 and PI3K/AKT/mTOR signaling
9
作者 Xiao-Jing Gu Ya-Jun Li +1 位作者 Fang Wang Ting Ye 《World Journal of Gastrointestinal Oncology》 SCIE 2022年第11期2170-2182,共13页
BACKGROUND Gastric cancer(GC)is a common type of digestive cancer with high morbidity and mortality rates worldwide.Considerable effort has been expended in understanding the mechanism of GC development and metastasis... BACKGROUND Gastric cancer(GC)is a common type of digestive cancer with high morbidity and mortality rates worldwide.Considerable effort has been expended in understanding the mechanism of GC development and metastasis.The current study therefore explores the involvement of microRNAs in the regulation of GC progression.AIM To explore the expression and function of miR-30e-3p in GC development.METHODS MiR-30e-3p was found to be downregulated in GC,with low levels thereof predicting poor outcomes among patients with GC.Functionally,we revealed that miR-30e-3p suppressed cell growth and metastatic behaviors of GC cells.Bioinformatics analysis predicted that THO complex 2(THOC2)was a direct target of miR-30e-3p,and the interaction between miR-30e-3p and THOC2 was further validated by a luciferase reporter assay.RESULTS Our findings revealed that knockdown of THOC2 inhibited the growth and metastatic behaviors of GC cells.After investigating signaling pathways involved in miR-30e-3p regulation,we found that the miR-30e-3p/THOC2 axis regulated the PI3K/AKT/mTOR pathway in GC.CONCLUSION Our findings suggest the novel functional axis miR-30e-3p/THOC2 is involved in GC development and progression.The miR-30e-3p/THOC2 axis could be utilized to develop new therapies against GC. 展开更多
关键词 Gastric cancer MiR-30e-3p THO complex2 PI3K/AKT/mtor signaling
下载PDF
Effects of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis
10
作者 Jing-Yu Zhan Xing-Xing Yuan +2 位作者 Bing-Yu Wang Chang-Fa Liu Ya-Li Zhang 《Journal of Hainan Medical University》 2021年第24期27-31,共5页
Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were random... Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were randomly divided into the control group,model group,Liancao-Xieli group and mesalazine group,with 10 mice in each group.In addition to the control group,the remaining three groups of mice were induced by 3%dextran sulfate sodium(DSS)to induce acute UC model.During the modeling period,mice in each group were given corresponding drugs and normal saline by gavage.At the end of the experiment,HE staining was used to observe the pathological changes of colonic tissue in each group,and ELISA was used to detect the inflammatory factors(TNF-α,IL-6,IL-1β,IL-8,IL-17,and INF-γ)in serum and colonic tissue.The expression levels of TLR4/PI3K/Akt/mTOR signaling pathway related proteins were also detected by Western blot;Results:Compared with the model group,Liancao-Xieli capsule could significantly increase the colon length and decrease the score of colon histopathology in UC mice(P<0.01).In addition,the levels of TNF-α,IL-6,IL1β,IL-8,IL-17,and INF-γwere significantly reduced in serum and colon tissue,and the expressions of TLR4,PI3K,p-Akt and p-mTOR were significantly down-regulated in LiancaoXieyi group when compared with the model group(P<0.01).While the expressions of Akt and mTOR were not significantly affected in Liancao-Xieyi group(P>0.05);Conclusion:LiancaoXieli capsule can reduce the secretion of inflammatory factors,improve the intestinal mucosal damage and inflammatory response in UC by inhibiting the activation of TLR4/PI3K/Akt/mTOR signaling pathway。 展开更多
关键词 Liancao-Xieli capsule Ulcerative colitis Inflammatory factors TLR4/PI3K/Akt/mtor signaling pathway
下载PDF
PI3K/AKT/mTOR signaling pathway inhibitors in proliferation of retinal pigment epithelial cells 被引量:13
11
作者 Na Cai Shun-Dong Dai +3 位作者 Ning-Ning Liu Li-Min Liu Ning Zhao Lei Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第6期675-680,共6页
AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K,... AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components. 展开更多
关键词 human retinal pigment epithelial cell proliferative vitreoretinopathy PI3K/AKT/mtor signal pathway
下载PDF
Biomimetic hydroxyapatite coating on the 3D-printed bioactive porous composite ceramic scaffolds promoted osteogenic differentiation via PI3K/AKT/mTOR signaling pathways and facilitated bone regeneration in vivo 被引量:1
12
作者 Bizhi Tan Naru Zhao +13 位作者 Wei Guo Fangli Huang Hao Hu Yan Chen Jungang Li Zemin Ling Zhiyuan Zou Rongcheng Hu Chun Liu Tiansheng Zheng Gang Wang Xiao Liu Yingjun Wang Xuenong Zou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期54-64,共11页
The architecture and surface modifications have been regarded as effective methods to enhance the bi-ological response of biomaterials in bone tissue engineering.The porous architecture of the implanta-tion was essent... The architecture and surface modifications have been regarded as effective methods to enhance the bi-ological response of biomaterials in bone tissue engineering.The porous architecture of the implanta-tion was essential conditions for bone regeneration.Meanwhile,the design of biomimetic hydroxyap-atite(HAp)coating on porous scaffolds was demonstrated to strengthen the bioactivity and stimulate osteogenesis.However,bioactive bio-ceramics such asβ-tricalcium phosphate(β-TCP)and calcium sili-cate(CS)with superior apatite-forming ability were reported to present better osteogenic activity than that of HAp.Hence in this study,3D-printed interconnected porous bioactive ceramicsβ-TCP/CS scaf-fold was fabricated and the biomimetic HAp apatite coating were constructed in situ via hydrothermal reaction,and the effects of HAp apatite layer on the fate of mouse bone mesenchymal stem cells(mBM-SCs)and the potential mechanisms were explored.The results indicated that HAp apatite coating en-hanced cell proliferation,alkaline phosphatase(ALP)activity,and osteogenic gene expression.Further-more,PI3K/AKT/mTOR signaling pathway is proved to have an important impact on cellular functions.The present results demonstrated that the key molecules of phosphatidylinositol 3-kinase(PI3K),protein kinase B(AKT)and mammalian target of rapamycin(mTOR)were activated after the biomimetic hydrox-yapatite coating were constructed on the 3D-printed ceramic scaffolds.Besides,the activated influence on the protein expression of Runx2 and BMP2 could be suppressed after the treatment of inhibitor HY-10358.In vivo studies showed that the constructed HAp coating promoted bone formation and strengthen the bone quality.These results suggest that biomimetic HAp coating constructed on the 3D-printed bioac-tive composite scaffolds could strengthen the bioactivity and the obtained biomimetic multi-structured scaffolds might be a potential alternative bone graft for bone regeneration. 展开更多
关键词 Bioactive ceramics Hydroxyapatite coating 3D-printed porous ceramic scaffold PI3K/AKT/mtor signaling pathway Bone regeneration
原文传递
A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis
13
作者 John Akrofi Kubi Augustine Suurinobah Brah +5 位作者 Kenneth Man Chee Cheung Yin Lau Lee Kai-Fai Lee Stephen Cho Wing Sze Wei Qiao Kelvin Wai-Kwok Yeung 《Bioactive Materials》 SCIE CSCD 2023年第9期429-446,共18页
Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2... Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2 have been recognized as one of the powerful osteogenic substances that promote mesenchymal stem cells (MSCs) to osteoblast differentiation and are widely applied clinically for bone defect repairs. However, recent reports show that BMP-2 treatment has been associated with clinical adverse side effects such as ectopic bone formation, osteolysis and stimulation of inflammation. Here, we have identified one new osteogenic protein, named ‘HKUOT-S2’ protein, from Dioscorea opposita Thunb. Using the bone defect model, we have shown that the HKUOT-S2 protein can accelerate bone defect repair by activating the mTOR signaling axis of MSCs-derived osteoblasts and increasing osteoblastic biomineralization. The HKUOT-S2 protein can also modulate the transcriptomic changes of macrophages, stem cells, and osteoblasts, thereby enhancing the crosstalk between the polarized macrophages and MSCs-osteoblast differentiation to facilitate osteogenesis. Furthermore, this protein had no toxic effects in vivo. We have also identified HKUOT-S2 peptide sequence TKSSLPGQTK as a functional osteogenic unit that can promote osteoblast differentiation in vitro. The HKUOT-S2 protein with robust osteogenic activity could be a potential alternative osteoanabolic agent for promoting osteogenesis and bone defect repairs. We believe that the HKUOT-S2 protein may potentially be applied clinically as a new class of osteogenic agent for bone defect healing. 展开更多
关键词 Dioscorea spp protein Mesenchymal stem cells(MSCs) Osteoblast differentiation Bone mineral density(BMD) Bone defect repair mtor signaling pathway
原文传递
Novel insights into mTOR signalling pathways: A paradigm for targeted tumor therapy
14
作者 Oivind Riis Andreas Stensvold +2 位作者 Helge Stene-Johansen Frank Westad Rabia Mehmod 《Cancer Advances》 2023年第17期1-10,共10页
As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and dis... As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors. 展开更多
关键词 mtor signal transduction pathway TUMOR drug resistance targeted therapy Submit a
下载PDF
Macrophage-derived SHP-2 inhibits the metastasis of colorectal cancer via Tie2-PI3K signals 被引量:1
15
作者 XUELIANG WU SHAOYU GUAN +5 位作者 YONGGANG LU JUN XUE XIANGYANG YU QI ZHANG XIMO WANG TIAN LI 《Oncology Research》 SCIE 2023年第2期125-139,共15页
This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase(SHP-2)on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2(Tie2)-expressin... This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase(SHP-2)on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2(Tie2)-expressing monocyte/macrophages(TEMs)and the influence of the angiopoietin(Ang)/Tie2-phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)(Ang/Tie2-PI3K/Akt/mTOR)signaling pathway on the tumor microvascular remodeling in an immunosuppressive microenvironment.In vivo,SHP-2-deficient mice were used to construct colorectal cancer(CRC)liver metastasis models.SHP-2-deficient mice had significantly more metastatic cancer and inhibited nodules on the liver surface than wild-type mice,and the high-level expression of p-Tie2 was found in the liver tissue of the macrophages’specific SHP-2-deficient mice(SHP-2MACKO)+planted tumor mice.Compared with the SHP-2 wild type mice(SHP-2WT)+planted tumor group,the SHP-2MAC-KO+planted tumor group experienced increased expression of p-Tie2,p-PI3K,p-Akt,p-mTOR,vascular endothelial growth factor(VEGF),cyclooxygenase-2(COX-2),matrix metalloproteinase 2(MMP2),and MMP9 in the liver tissue.TEMs selected by in vitro experiments were co-cultured with remodeling endothelial cells and tumor cells as carriers.It was found that when Angpt1/2 was used for stimulation,the SHP-2MAC-KO+Angpt1/2 group displayed evident increases in the expression of the Ang/Tie2-PI3K/Akt/mTOR pathway.The number of cells passing through the lower chamber and the basement membrane and the number of blood vessels formed by cells compared with the SHP-2WT+Angpt1/2 group,while these indexes were subjected to no changes under the simultaneous stimulation of Angpt1/2+Neamine.To sum up,the conditional knockout of SHP-2 can activate the Ang/Tie2-PI3K/Akt/mTOR pathway in TEMs,thereby strengthening tumor micro angiogenesis in the microenvironment and facilitating CRC liver metastasis. 展开更多
关键词 SHP-2 TIE2 PI3K Akt/mtor signaling Colorectal cancer Liver metastasis MACROPHAGES
下载PDF
Regulatory Effects of Zuogui Pill on Apoptosis of Follicles in Rats Injured by 60Co-γRays Based on PI3K/Akt/m TOR Signaling Pathway
16
作者 Fenqin ZHAO Mingxia AN +4 位作者 Xiaonan DING Jieying LIU Yan ZHAO Zhihui XIE Shuping LI 《Medicinal Plant》 CAS 2022年第5期45-50,58,共7页
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal... [Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein. 展开更多
关键词 Radiation injury Premature ovarian failure(POF) Zuogui Pill Terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL) Phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mtor)signaling pathway B-cell lymphoma-2 Bcl-2-associated X protein
下载PDF
基于磷脂酰肌醇3激酶/蛋白激酶B/雷帕霉素靶蛋白信号通路小干扰RNA沉默微小RNA-373对喉癌细胞的影响 被引量:2
17
作者 彭丽娜 武川军 +2 位作者 要兆旭 赵倩 韩海平 《中国耳鼻咽喉头颈外科》 CSCD 2022年第3期185-187,共3页
目的 探讨磷脂酰肌醇3激酶(Phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(Protein kinase B,Akt)/雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路小干扰RNA(Small interfering RNA,siRNA)沉默微小RNA-373(Microrna-373... 目的 探讨磷脂酰肌醇3激酶(Phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(Protein kinase B,Akt)/雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路小干扰RNA(Small interfering RNA,siRNA)沉默微小RNA-373(Microrna-373,miR-373)对喉癌细胞生物学行为的影响。方法 喉癌TU212细胞株经常规培养后分为空白组、空白转染组、过表达组和沉默组,四组细胞分别培养。检测各组细胞增殖、凋亡、迁移、侵袭能力及PI3K/AKT/mTOR通路蛋白表达。结果 与过表达组相比,沉默组miR-373、P13K、AKT、mTOR表达量较低(P<0.05);沉默组24、48、72 h细胞增殖率较低,72 h细胞凋亡率较高(P<0.05);沉默组细胞迁移率较少、侵袭数较少(P<0.05)。结论 沉默miR-373可能通过作用于PI3K/AKT/mTOR信号通路,下调P13K、AKT、mTOR表达,抑制喉癌细胞增殖、迁移、侵袭,促进凋亡。 展开更多
关键词 喉肿瘤(Laryngeal Neoplasms) 细胞增殖(Cell Proliferation) 细胞凋亡(Apoptosis) 微小RNA-373(microRNA-373) PI3K/AKT/mtor信号通路(PI3K/AKT/mtor signaling pathway)
下载PDF
Promise of metformin for preventing age-related cognitive dysfunction 被引量:1
18
作者 Leelavathi N.Madhu Maheedhar Kodali Ashok K.Shetty 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期503-507,共5页
The expanded lifespan of people,while a positive advance,has also amplified the prevalence of age-related disorders,which include mild cognitive impairment,dementia,and Alzheimer's disease.Therefore,competent ther... The expanded lifespan of people,while a positive advance,has also amplified the prevalence of age-related disorders,which include mild cognitive impairment,dementia,and Alzheimer's disease.Therefore,competent therapies that could improve the healthspan of people have great significance.Some of the dietary and pharmacological approaches that augment the lifespan could also preserve improved cognitive function in old age.Metformin,a drug widely used for treating diabetes,is one such candidate that could alleviate age-related cognitive dysfunction.However,the possible use of metformin to alleviate age-related cognitive dysfunction has met with conflicting results in human and animal studies.While most clinical studies have suggested the promise of metformin to maintain better cognitive function and reduce the risk for developing dementia and Alzheimer's disease in aged diabetic people,its efficacy in the nondiabetic population is still unclear.Moreover,a previous animal model study implied that metformin could adversely affect cognitive function in the aged.However,a recent animal study using multiple behavioral tests has reported that metformin treatment in late middle age improved cognitive function in old age.The study also revealed that cognitionenhancing effects of metformin in aged animals were associated with the activation of the energy regulator adenosine monophosphate-activated protein kinase,diminished neuroinflammation,inhibition of the mammalian target of rapamycin signaling,and augmented autophagy in the hippocampus.The proficiency of metformin to facilitate these favorable modifications in the aged hippocampus likely underlies its positive effect on cognitive function.Nonetheless,additional studies probing the outcomes of different doses and durations of metformin treatment at specific windows in the middle and old age across sex in nondiabetic and non-obese prototypes are required to substantiate the promise of metformin to maintain better cognitive function in old age. 展开更多
关键词 activated microglia aging AUTOPHAGY cognitive dysfunction memory METFORMIN mtor signaling NEUROINFLAMMATION
下载PDF
CircMAN1A2 promotes vasculogenic mimicry of nasopharyngeal carcinoma cells through upregulating ERBB2 via sponging miR-940 被引量:1
19
作者 HUAQING MO JINGYI SHEN +5 位作者 YUXIAO ZHONG ZENAN CHEN TONG WU YANYU LV YANYAN XIE YANRONG HAO 《Oncology Research》 SCIE 2022年第4期187-199,共13页
Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,th... Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,the underlying mechanisms are unclear.In the present study,we used miR-940 silencing and overexpression for in vitro NPC cell EdU staining,wound healing assay and 3D cell culture assay,and in vivo xenograft mouse model and VM formation to assess miR-940 function.We found that ectopic miR-940 expression reduced NPC cell proliferation,migration and VM,as well as tumorigenesis in vivo.By bioinformatic analysis,circMAN1A2 was identified as a circRNA that binds to miR-940.Mechanistically,we confirmed that circMAN1A2 acts as a sponge for miR-940,impairs the inhibitory effect of miR-940 on target ERBB2,and then activates the PI3K/AKT/mTOR signaling pathway using RNA-FISH,dual luciferase reporter gene and rescue analysis assays.In addition,upregulation of ERBB2 expression is associated with clinical staging and poor prognosis of NPC.Taken together,the present findings suggest that circMAN1A2 promotes VM formation and progression of NPC through miR-940/ERBB2 axis and further activates the PI3K/AKT/mTOR pathway.Therefore,circMAN1A2 may become a biomarker and therapeutic target for anti-angiogenic therapy in patients with nasopharyngeal carcinoma. 展开更多
关键词 MiR-940 circMAN1A2 ERBB2 Vasculogenic mimicry Nasopharyngeal carcinoma PI3K/AKT/mtor signaling pathway
下载PDF
Macrophage-derived exosomal miR-342-3p promotes the progression of renal cell carcinoma through the NEDD4L/CEP55 axis
20
作者 JIAFU FENG BEI XU +6 位作者 CHUNMEI DAI YAODONG WANG GANG XIE WENYU YANG BIN ZHANG XIAOHAN LI JUN WANG 《Oncology Research》 SCIE 2021年第5期331-349,共19页
Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its ... Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its early diagnosis and treatment for RCC.microRNA(miRNA)data of M2-EVs and RCC were searched on the Gene Expression Omnibus database,followed by the prediction of the potential downstream target.Expression of target genes was measured via RT-qPCR and Western blot,respectively.M2 macrophage was obtained viaflow cytometry with M2-EVs extracted.The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed.Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes.M2-EVs induced RCC growth and metastasis.miR-342-3p showed high expression in both M2-EVs and RCC cells.M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate,invade and migrate.In RCC cells,M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L,thereby exerting tumor-promoting effects.CEP55 could be degraded by ubiquitination under the function of NEDD4L,and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway.In conclusion,M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway,strongly driving the proliferative,migratory and invasive of RCC cells. 展开更多
关键词 Renal cell carcinoma M2 macrophage miR-342-3p NEDD4L CEP55 PI3K/AKT/mtor signaling pathway
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部