Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this s...Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this study,six lacustrine shale samples with different thermal maturities from the first member of the Qingshankou Formation in the Songliao Basin,of which vitrinite reflectance(R_(o))ranging from 0.58% to 1.43%,were selected for a comparative analysis.Scanning electron microscopy(SEM)and reflected light microscopy were combined to investigate the development of organic pores in different macerals during thermal maturation.The results show that alginite and liptodetrinite are the dominant primary macerals,followed by bituminite.Only a few primary organic pores developed in the alginite at the lowest maturity(R_(o)=0.58%).As a result of petroleum generation,oil-prone macerals began to transform to initial-oil solid bitumen at the early oil window(R_(o)=0.73%)and shrinkage cracks were observed.Initial-oil solid bitumen cracked to oil,gas and post-oil bitumen by primary cracking(R_(o)=0.98%).Moreover,solid bitumen(SB)was found to be the dominant OM when R_(o)>0.98%,which indicates that SB is the product of oil-prone macerals transformation.Many secondary bubble pores were observed on SB,which formed by gas release,while devolatilization cracks developed on migrated SB.Additionally,at the late oil window(Ro?1.16%),migrated SB filled the interparticle pore spaces.With further increase in temperature,the liquid oil underwent secondary cracking into pyrobitumen and gas,and spongy pores developed on the pyrobitumen at higher levels of maturity(Ro=1.43%),which formed when pyrobitumen cracked into gas.Vitrinite and inertinite are stable without any visible pores over the range of maturities,verifying their low petroleum generation potential.In addition,it was concluded that clay minerals could have a catalytic effect on the petroleum generation,which may explain why organicclay mixtures had more abundant pores than single OM particles.However,after R_(o)>0.98%,authigenic minerals occupied the organic pore spaces on the organic-clay mixtures,resulting in fewer pores compared to those observed in samples at the early to peak oil window.展开更多
This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic p...This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation.展开更多
In this research,molecular structure models were developed respectively for Shenhua coal vitrinite concentrates(SDV)and inertinite concentrates(SDI),on the basis of information on constitutional unit of Shenhau coal a...In this research,molecular structure models were developed respectively for Shenhua coal vitrinite concentrates(SDV)and inertinite concentrates(SDI),on the basis of information on constitutional unit of Shenhau coal and elemental analysis results obtained from^(13)C-NMR analysis characterization,FTIR analysis characterization,X-ray diffraction XRD and XPS analysis characterization.It can be observed from characterization data and molecular structure models that the structure of SDV and SDI is dominated by aromatic hydrocarbon,with aromaticity of SDI higher than that of SDV;SDV mainly consists of small molecule basic structure unit,while SDI is largely made from macromolecular structure unit.Based on bond-level parameters of the molecular model,the research found through the autoclave experiment that vitrinite liquefaction process goes under thermodynamics control and inertinite liquefaction process under dynamics control.The research developed an efficient directional direct coal liquefaction technology based on the maceral characteristics of Shenhua coal,which can effectively improve oil yield and lower gas yield.展开更多
Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen ...Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen levels in the latest Permian. Although the macerals in the studied sections are generally dominated by vitrinite, the inertinite group makes up a considerable proportion. Its content increases upward from the beginning of the Late Permian to the coal seam near the Permian- Triassic boundary. Based on the microscopic features and the prevailing theory that inertinite is largely a by-product of paleo-fires, we suggest that the increasing upward trend of the inertinite abundance in the latest Permian could imply that the Late Permian peatland had suffered from frequent wildfires. Since ignition and burning depend on sufficient oxygen, a model-based calculation suggests that the 02 levels near the Wuchiapingian/Changhsingian boundary and the Permian-Triassic boundary are 27% and 28% respectively. This output adds supports to other discoveries made in the temporal marine and terrestrial sediments, and challenges the theories advocating hypoxia as a mechanism for the PermianTriassic boundary crisis.展开更多
The pyrolysis characteristics of Shendong Shangwan coal and its macerals concentrate were investigated using thermogravimetry (TG) coupled with mass spectrometry (MS). The evolved gases were analyzed online by MS ...The pyrolysis characteristics of Shendong Shangwan coal and its macerals concentrate were investigated using thermogravimetry (TG) coupled with mass spectrometry (MS). The evolved gases were analyzed online by MS spectroscopy. The results of TG/DTG (derivative thermogravimetry) show ths vitrinite concentrate has greater weight loss rate and higher volatile yield than the other two samples. More light hydrocarbons C1-C5 are released from the vitfinite concentrate than from the Shendong Shangwan coal and inertinite concentrated in the process of pyrolysis. Three samples have similar shape curves of evolved gases of C2~C5 with different intensities. When the pyrolysis temperature was lower than 418℃, the amount of C6H6 evolved in the process of pyrolysis of inertinite concentrated was higher than that of raw coal and vitrinite concentrate. As the temperature rising, the production rate of C6H6 increased. Below 672℃, C6H6 evolution rate of vitrinite concentrate was far greater than the other two samples; the main evolution temperature range of C7H8 was 400℃ to 700℃ for the three samples. The amount of HE and H20 released first increased and then decreased with the temperature increase while more H2 released for pyrolysis of inertinite concentrated and more H20 released for the pyrolysis of vitrinite concentrate.展开更多
The concentrates with different maceral contents were obtained from Kailuan coking coals with different coal ranks(Ro;ranvarying from 0.88%to 1.73%)by float–sink separation in lab.Then these concentrates were charact...The concentrates with different maceral contents were obtained from Kailuan coking coals with different coal ranks(Ro;ranvarying from 0.88%to 1.73%)by float–sink separation in lab.Then these concentrates were characterized by proximate analysis,ultimate analysis,petrography analysis and coking index determination.The results show that the vitrinite is characterized as nature of lower carbon content,higher hydrogen content,higher volatile matter and stronger caking property compared to inertinite.The relationships between variation rate of volatile matter and maximum volatile matter and coal ranks are identified,and a linear model is developed for fast determination of the maceral contents.Compared to inertinite-rich concentrate,the blending ratio of vitrinite-rich concentrate is increased by 13%,which is considered to be a potential technique based on maceral separation for expanding the coking coal resources.展开更多
The modification of Shenfu coals by a microwave treatment carried out under a hydrogen or a methane atmosphere, and the subsequent maceral separation by flotation, are described in this paper. The surface contact angl...The modification of Shenfu coals by a microwave treatment carried out under a hydrogen or a methane atmosphere, and the subsequent maceral separation by flotation, are described in this paper. The surface contact angle and the Zeta potential of the coal macerals were measured both with and without the treat- ment. The results show that the surface wettability of SFF (Shenfu Fusain) and SFV (Shenfu Vitrain) can be changed by the microwave treatment. An increase in the difference in surface wettability of SFF and SFV causes in a subsequent increase in the enrichment of inertinite and vitrinite. The results of the Zeta potential measurements show that the surface potentials of SFF and SFV are also changed by the treatment.展开更多
Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals...Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals were dominated by inertinitein seam 2 and by vitrinite in seam 9^(-2).Three maceral groups were selected as indicatorsof peat-forming environments.Two triangle diagrams were drawn based on the indicatorsto explicate the peat-forming environments of permian seam 2 and Carboniferousseam 9^(-2).The results indicate that the peat of carboniferous seam 9^(-2) formed dominantlyin wet swamps,whereas the peat of Permian seam 2 formed dominantly in dry swampsand open moor environments.展开更多
The flotation characteristics of Shenfu coal macerals was researched. Taking flotation recovery and enrichment of macerals as the evaluation objects, the influence of the agent dosage, pulp concentration, impeller spe...The flotation characteristics of Shenfu coal macerals was researched. Taking flotation recovery and enrichment of macerals as the evaluation objects, the influence of the agent dosage, pulp concentration, impeller speed and aeration rate on the separating effect was investigated. And the optimum process conditions of flotation were confirmed. The results show that the agent dosage, pulp concentration, impeller speed and aeration rate have a significant impact on flotation recovery and en- richment of macerals. The float recovery was 73.28% and enrichment ratio of vitrinite was 83.89% when CTAB dosage of 1.0 kg/t, pulp concentration of 100 g/L, impeller speed of 1 700 r/min and aeration rate of 0.25 m3/(m2·min) were used. The tailings yield was 60.30% and enrichment ratio of inertinite was 61.44% when CTAB dosage of 0.5 kg/t, pulp concentration of 100 g/L, impeller speed of I 700 r/min and aeration rate of 0.20 m3/(m2·min) were used.展开更多
The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with ...The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with different maturities dscribed their SIMS spectral characteristics and found that different macerals have differnt spectra which, reflected the compositional and structural differences of macerals. Moreover, the change bod of parameter CH2+/CH3+ can be used for the evaluation of thermal evolution regularity of macerals in the hydrocarbon source rocks The study results show that the SIMS technique is a powerful means for microara analysis of macerals in coals and source rocks. It is certain that the study level of macerals can be raised by detailed study of SIMS results of SIMS results of macerals.展开更多
In order to research how lignite is utilized, two coal samples of seams 2 and 4 were taken from the Huangxian Basin, China. The samples were separated into vitrinite, sporinite, and resinite. Geo-chemical and pyrolysi...In order to research how lignite is utilized, two coal samples of seams 2 and 4 were taken from the Huangxian Basin, China. The samples were separated into vitrinite, sporinite, and resinite. Geo-chemical and pyrolysis methods were used to analyse three maceral groups and two seam samples. The results indicate that the resinite and sporinite groups have higher extract yields, S1, S2, HI values, and pyrolysis compounds. These differences may shed light on the usage of the Huangxian lignite. Seam 2 pro- duces more gas and oil than seam 4 does because seam 2 contains more resinite and sporinite macerals.展开更多
The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,re...The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.展开更多
Baosteel developed a digital automatic analysis technique for maceral specification in 2002. This analysis system combines digital image processing, graphics, databases, expert systems, artificial intelligence and oth...Baosteel developed a digital automatic analysis technique for maceral specification in 2002. This analysis system combines digital image processing, graphics, databases, expert systems, artificial intelligence and other advanced technologies. After 6 years of application in coke production, the system proved itself successful in coal quality testing and coal blending guidance on maceral. However,during this long process, some inadequacies were found that impacted the precision and accuracy of the analysis. So ,in 2008 Baosteel began to work on improving the coal maceral analysis system. The improvements included the following:further upgrading and enhancing the analysis performance of microscopic images ;extending the gray levels to increase the reflectance measurement accuracy 64 times;changing the focus method and effectively eliminating the interference of halo. In addition, an improved image recognition method was adopted to make the extraction of vitrinite more accurate and a new model of coal constituent algorithm was added which can accurately determine the composition of maceral (exinite, vitrinite,inertinite). Since these improvements were completed, the system has achieved higher automation, speed and accuracy, collected more information and performed more accurate maceral analysis for coke production. Meanwhile, the improved system has provided a reliable analytical basis for the further study on the relationship between coke quality and coal blending.展开更多
The Middle Permian Lucaogou Formation in Northwestern China mainly contains typical saline lacustrine oil shale.To study the differences in geochemistry and hydrocarbon generation of source-rock samples in Lucaogou Fo...The Middle Permian Lucaogou Formation in Northwestern China mainly contains typical saline lacustrine oil shale.To study the differences in geochemistry and hydrocarbon generation of source-rock samples in Lucaogou Formation in Jimusaer Sag,57 core samples from two boreholes were analyzed herein by performing total organic carbon(TOC)analysis,RockeEval pyrolysis,and gas chromatographicemass spectrometry experiments on saturated hydrocarbons.The kinetics of oil generation were studied using two samples comprising typical maceral components.The results showed that the hydrocarbons produced by telalginite are relatively rich in pristane(Pr),phytane(Ph),b-carotane,high-carbon normal alkanes,and C29 regular steranes.Hydrocarbons produced by lamalginite contain a significantly higher content of C20 tricyclic terpanes(TT),C21TT,C24 tetracyclic terpanes(TeT),C29 norhopane,and C28 regular sterane.Based on the pyrolysis and biomarker compound parameters,telalginite has a higher conversion rate for hydrocarbons than lamalginite in the low-mature to mature stage,which is consistent with their kinetic analysis.Lamalginite source rock displays a much narrower distribution of activation energies than telalginite source rocks.Such narrower activation energy distribution effectively narrows the main stage of hydrocarbon generation.In addition,the activation energy distribution of lamalginite concentrated in the high-value interval,indicating the characteristics of the relatively lagging hydrocarbon generation of lamalginite.展开更多
On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the def...On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.展开更多
The visualization and evaluation of fruit vascular bundles in grape are indispensable for understanding the development and growth of the fruit. The vascular bundles in grape are as thin as human hair, and strongly ad...The visualization and evaluation of fruit vascular bundles in grape are indispensable for understanding the development and growth of the fruit. The vascular bundles in grape are as thin as human hair, and strongly adhere to flesh cells, making it difficult to isolate individual intact vessel elements. Currently there is little information about methods to characterize grape vascular tissue. In this study, we describe an easy and effective technique to visualize the xylem cell structure of the ‘Red Globe' grape(Vitis L.). The intact vascular bundles of the grape were isolated through enzymatic degradation of flesh cells by hydrolases which were effective in removing flesh cells from vascular bundles. This enabled the illustration of the fine surface structure of vessel elements and their arrangement in the vascular bundles of the grape. This modified method to separate the vascular bundles into individual vessel elements was more effective than former methods of manually shaking to isolate individual vessels. Clear images of xylem vessel arrangement and structural characteristics of individual vessel element were acquired by light microscopy(BX51, Olympus, Tokyo, Japan), transmission electron microscopy(Tecnai 12, Philips, Netherlands) and scanning electron microscopy(GeminiSEM 300, Carl Zeiss, Germany). In addition, the 3D structure of vessel elements was observed using confocal laser scanning microscopy(Zeiss: model: LSM-880, Oberkochen, Germany). The imaging techniques for visualizing and analyzing the structure of xylem vessels in grape described in this study are an improvement of past methods. An effective method to isolate grape vascular bundles from flesh cells was also developed, which enables the imaging of the fine surface structure of vessel elements and their arrangement in grape vascular bundles. By adjusting the process of maceration of vascular bundles, an easy and effective method was developed to gently disrupt the plant tissue and isolate individual vessel elements. These improved techniques are suitable to observe the intact morphology of vascular bundles in the grape, improve experimental efficiency and accelerate new discoveries on the anatomical structure of the grape.展开更多
To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure ...To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances.展开更多
This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical an...This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical and geochemical methods.Four maceral compositions and several associated elements parameters were selected as indicators and corresponding diagrams were drawn to explicate the sedimentary environment.The results indicate that the maceral is dominated by vitrinite and minerals are mainly kaolinite in the No.6 coal.The sedimentary facies vary from barrier island system to tidal-flat which is a deposition process of water body shallowing and the coal-forming plants are herbs and woody plants formed in swamps.展开更多
基金financially supported by the National Natural Science Foundation of China(41972156)the Natural Science Foundation of Heilongjiang Province(TD 2021D001).
文摘Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this study,six lacustrine shale samples with different thermal maturities from the first member of the Qingshankou Formation in the Songliao Basin,of which vitrinite reflectance(R_(o))ranging from 0.58% to 1.43%,were selected for a comparative analysis.Scanning electron microscopy(SEM)and reflected light microscopy were combined to investigate the development of organic pores in different macerals during thermal maturation.The results show that alginite and liptodetrinite are the dominant primary macerals,followed by bituminite.Only a few primary organic pores developed in the alginite at the lowest maturity(R_(o)=0.58%).As a result of petroleum generation,oil-prone macerals began to transform to initial-oil solid bitumen at the early oil window(R_(o)=0.73%)and shrinkage cracks were observed.Initial-oil solid bitumen cracked to oil,gas and post-oil bitumen by primary cracking(R_(o)=0.98%).Moreover,solid bitumen(SB)was found to be the dominant OM when R_(o)>0.98%,which indicates that SB is the product of oil-prone macerals transformation.Many secondary bubble pores were observed on SB,which formed by gas release,while devolatilization cracks developed on migrated SB.Additionally,at the late oil window(Ro?1.16%),migrated SB filled the interparticle pore spaces.With further increase in temperature,the liquid oil underwent secondary cracking into pyrobitumen and gas,and spongy pores developed on the pyrobitumen at higher levels of maturity(Ro=1.43%),which formed when pyrobitumen cracked into gas.Vitrinite and inertinite are stable without any visible pores over the range of maturities,verifying their low petroleum generation potential.In addition,it was concluded that clay minerals could have a catalytic effect on the petroleum generation,which may explain why organicclay mixtures had more abundant pores than single OM particles.However,after R_(o)>0.98%,authigenic minerals occupied the organic pore spaces on the organic-clay mixtures,resulting in fewer pores compared to those observed in samples at the early to peak oil window.
文摘This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation.
基金Supported by the National Engineering Labo-ratory of Direct Coal Liquefaction(MZY-16).
文摘In this research,molecular structure models were developed respectively for Shenhua coal vitrinite concentrates(SDV)and inertinite concentrates(SDI),on the basis of information on constitutional unit of Shenhau coal and elemental analysis results obtained from^(13)C-NMR analysis characterization,FTIR analysis characterization,X-ray diffraction XRD and XPS analysis characterization.It can be observed from characterization data and molecular structure models that the structure of SDV and SDI is dominated by aromatic hydrocarbon,with aromaticity of SDI higher than that of SDV;SDV mainly consists of small molecule basic structure unit,while SDI is largely made from macromolecular structure unit.Based on bond-level parameters of the molecular model,the research found through the autoclave experiment that vitrinite liquefaction process goes under thermodynamics control and inertinite liquefaction process under dynamics control.The research developed an efficient directional direct coal liquefaction technology based on the maceral characteristics of Shenhua coal,which can effectively improve oil yield and lower gas yield.
基金supported by the National Natural Science Foundation of China(41030213)the Major National S&T Program of China(2011ZX05033-002 and 2011ZX05009-002)the Fundamental Research Funds for the Central Universities in China(2010YD09)
文摘Inertinite maceral compositions of the Late Permian coals from three sections in the terrestrial and paralic settings of eastern Yunnan are analyzed in order to reveal the paleo-fire events and the atmospheric oxygen levels in the latest Permian. Although the macerals in the studied sections are generally dominated by vitrinite, the inertinite group makes up a considerable proportion. Its content increases upward from the beginning of the Late Permian to the coal seam near the Permian- Triassic boundary. Based on the microscopic features and the prevailing theory that inertinite is largely a by-product of paleo-fires, we suggest that the increasing upward trend of the inertinite abundance in the latest Permian could imply that the Late Permian peatland had suffered from frequent wildfires. Since ignition and burning depend on sufficient oxygen, a model-based calculation suggests that the 02 levels near the Wuchiapingian/Changhsingian boundary and the Permian-Triassic boundary are 27% and 28% respectively. This output adds supports to other discoveries made in the temporal marine and terrestrial sediments, and challenges the theories advocating hypoxia as a mechanism for the PermianTriassic boundary crisis.
文摘The pyrolysis characteristics of Shendong Shangwan coal and its macerals concentrate were investigated using thermogravimetry (TG) coupled with mass spectrometry (MS). The evolved gases were analyzed online by MS spectroscopy. The results of TG/DTG (derivative thermogravimetry) show ths vitrinite concentrate has greater weight loss rate and higher volatile yield than the other two samples. More light hydrocarbons C1-C5 are released from the vitfinite concentrate than from the Shendong Shangwan coal and inertinite concentrated in the process of pyrolysis. Three samples have similar shape curves of evolved gases of C2~C5 with different intensities. When the pyrolysis temperature was lower than 418℃, the amount of C6H6 evolved in the process of pyrolysis of inertinite concentrated was higher than that of raw coal and vitrinite concentrate. As the temperature rising, the production rate of C6H6 increased. Below 672℃, C6H6 evolution rate of vitrinite concentrate was far greater than the other two samples; the main evolution temperature range of C7H8 was 400℃ to 700℃ for the three samples. The amount of HE and H20 released first increased and then decreased with the temperature increase while more H2 released for pyrolysis of inertinite concentrated and more H20 released for the pyrolysis of vitrinite concentrate.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No.2010YH11)
文摘The concentrates with different maceral contents were obtained from Kailuan coking coals with different coal ranks(Ro;ranvarying from 0.88%to 1.73%)by float–sink separation in lab.Then these concentrates were characterized by proximate analysis,ultimate analysis,petrography analysis and coking index determination.The results show that the vitrinite is characterized as nature of lower carbon content,higher hydrogen content,higher volatile matter and stronger caking property compared to inertinite.The relationships between variation rate of volatile matter and maximum volatile matter and coal ranks are identified,and a linear model is developed for fast determination of the maceral contents.Compared to inertinite-rich concentrate,the blending ratio of vitrinite-rich concentrate is increased by 13%,which is considered to be a potential technique based on maceral separation for expanding the coking coal resources.
基金support provided by theShanxi Province "13115" Science and Technology Innovation Program (No. 2008ZDKG-53)the Shanxi International Scienceand Technology Cooperation Project of China (No. 2007KW-02)
文摘The modification of Shenfu coals by a microwave treatment carried out under a hydrogen or a methane atmosphere, and the subsequent maceral separation by flotation, are described in this paper. The surface contact angle and the Zeta potential of the coal macerals were measured both with and without the treat- ment. The results show that the surface wettability of SFF (Shenfu Fusain) and SFV (Shenfu Vitrain) can be changed by the microwave treatment. An increase in the difference in surface wettability of SFF and SFV causes in a subsequent increase in the enrichment of inertinite and vitrinite. The results of the Zeta potential measurements show that the surface potentials of SFF and SFV are also changed by the treatment.
基金Supported by the National Natural Science Foundation of China(40773040)the National Basic Research Program of China (2003CB214607)
文摘Maceral composition and aromatic compounds were determined on columnsamples to study the peat-forming environments of Permian coal seam 2 and Carboniferouscoal seam 9^(-2) from the Xingtai coalfield,China.The macerals were dominated by inertinitein seam 2 and by vitrinite in seam 9^(-2).Three maceral groups were selected as indicatorsof peat-forming environments.Two triangle diagrams were drawn based on the indicatorsto explicate the peat-forming environments of permian seam 2 and Carboniferousseam 9^(-2).The results indicate that the peat of carboniferous seam 9^(-2) formed dominantlyin wet swamps,whereas the peat of Permian seam 2 formed dominantly in dry swampsand open moor environments.
文摘The flotation characteristics of Shenfu coal macerals was researched. Taking flotation recovery and enrichment of macerals as the evaluation objects, the influence of the agent dosage, pulp concentration, impeller speed and aeration rate on the separating effect was investigated. And the optimum process conditions of flotation were confirmed. The results show that the agent dosage, pulp concentration, impeller speed and aeration rate have a significant impact on flotation recovery and en- richment of macerals. The float recovery was 73.28% and enrichment ratio of vitrinite was 83.89% when CTAB dosage of 1.0 kg/t, pulp concentration of 100 g/L, impeller speed of 1 700 r/min and aeration rate of 0.25 m3/(m2·min) were used. The tailings yield was 60.30% and enrichment ratio of inertinite was 61.44% when CTAB dosage of 0.5 kg/t, pulp concentration of 100 g/L, impeller speed of I 700 r/min and aeration rate of 0.20 m3/(m2·min) were used.
文摘The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with different maturities dscribed their SIMS spectral characteristics and found that different macerals have differnt spectra which, reflected the compositional and structural differences of macerals. Moreover, the change bod of parameter CH2+/CH3+ can be used for the evaluation of thermal evolution regularity of macerals in the hydrocarbon source rocks The study results show that the SIMS technique is a powerful means for microara analysis of macerals in coals and source rocks. It is certain that the study level of macerals can be raised by detailed study of SIMS results of SIMS results of macerals.
基金Supported by Deutscher Akademischer Austauschdienst (DAAD)
文摘In order to research how lignite is utilized, two coal samples of seams 2 and 4 were taken from the Huangxian Basin, China. The samples were separated into vitrinite, sporinite, and resinite. Geo-chemical and pyrolysis methods were used to analyse three maceral groups and two seam samples. The results indicate that the resinite and sporinite groups have higher extract yields, S1, S2, HI values, and pyrolysis compounds. These differences may shed light on the usage of the Huangxian lignite. Seam 2 pro- duces more gas and oil than seam 4 does because seam 2 contains more resinite and sporinite macerals.
基金the National Natural Science Foundation of China(50474080)Educational Department Foundation for Returnee
文摘The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure mac- eral are carried out at 30,40,50,55,60,65℃,respectively,after analyzing the proximate element and maceral of coal samples,which was aimed to study the CO adsorptive capa- bility of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50℃),and the tem- perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area;what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high popu- larly in low rank coal samples,especially,the content of hydroxide(-OH) has great influ- ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.
文摘Baosteel developed a digital automatic analysis technique for maceral specification in 2002. This analysis system combines digital image processing, graphics, databases, expert systems, artificial intelligence and other advanced technologies. After 6 years of application in coke production, the system proved itself successful in coal quality testing and coal blending guidance on maceral. However,during this long process, some inadequacies were found that impacted the precision and accuracy of the analysis. So ,in 2008 Baosteel began to work on improving the coal maceral analysis system. The improvements included the following:further upgrading and enhancing the analysis performance of microscopic images ;extending the gray levels to increase the reflectance measurement accuracy 64 times;changing the focus method and effectively eliminating the interference of halo. In addition, an improved image recognition method was adopted to make the extraction of vitrinite more accurate and a new model of coal constituent algorithm was added which can accurately determine the composition of maceral (exinite, vitrinite,inertinite). Since these improvements were completed, the system has achieved higher automation, speed and accuracy, collected more information and performed more accurate maceral analysis for coke production. Meanwhile, the improved system has provided a reliable analytical basis for the further study on the relationship between coke quality and coal blending.
文摘The Middle Permian Lucaogou Formation in Northwestern China mainly contains typical saline lacustrine oil shale.To study the differences in geochemistry and hydrocarbon generation of source-rock samples in Lucaogou Formation in Jimusaer Sag,57 core samples from two boreholes were analyzed herein by performing total organic carbon(TOC)analysis,RockeEval pyrolysis,and gas chromatographicemass spectrometry experiments on saturated hydrocarbons.The kinetics of oil generation were studied using two samples comprising typical maceral components.The results showed that the hydrocarbons produced by telalginite are relatively rich in pristane(Pr),phytane(Ph),b-carotane,high-carbon normal alkanes,and C29 regular steranes.Hydrocarbons produced by lamalginite contain a significantly higher content of C20 tricyclic terpanes(TT),C21TT,C24 tetracyclic terpanes(TeT),C29 norhopane,and C28 regular sterane.Based on the pyrolysis and biomarker compound parameters,telalginite has a higher conversion rate for hydrocarbons than lamalginite in the low-mature to mature stage,which is consistent with their kinetic analysis.Lamalginite source rock displays a much narrower distribution of activation energies than telalginite source rocks.Such narrower activation energy distribution effectively narrows the main stage of hydrocarbon generation.In addition,the activation energy distribution of lamalginite concentrated in the high-value interval,indicating the characteristics of the relatively lagging hydrocarbon generation of lamalginite.
基金Supported by the the National Natural Science Foundation of China(U22A201550).
文摘On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31872050 and 32102348)。
文摘The visualization and evaluation of fruit vascular bundles in grape are indispensable for understanding the development and growth of the fruit. The vascular bundles in grape are as thin as human hair, and strongly adhere to flesh cells, making it difficult to isolate individual intact vessel elements. Currently there is little information about methods to characterize grape vascular tissue. In this study, we describe an easy and effective technique to visualize the xylem cell structure of the ‘Red Globe' grape(Vitis L.). The intact vascular bundles of the grape were isolated through enzymatic degradation of flesh cells by hydrolases which were effective in removing flesh cells from vascular bundles. This enabled the illustration of the fine surface structure of vessel elements and their arrangement in the vascular bundles of the grape. This modified method to separate the vascular bundles into individual vessel elements was more effective than former methods of manually shaking to isolate individual vessels. Clear images of xylem vessel arrangement and structural characteristics of individual vessel element were acquired by light microscopy(BX51, Olympus, Tokyo, Japan), transmission electron microscopy(Tecnai 12, Philips, Netherlands) and scanning electron microscopy(GeminiSEM 300, Carl Zeiss, Germany). In addition, the 3D structure of vessel elements was observed using confocal laser scanning microscopy(Zeiss: model: LSM-880, Oberkochen, Germany). The imaging techniques for visualizing and analyzing the structure of xylem vessels in grape described in this study are an improvement of past methods. An effective method to isolate grape vascular bundles from flesh cells was also developed, which enables the imaging of the fine surface structure of vessel elements and their arrangement in grape vascular bundles. By adjusting the process of maceration of vascular bundles, an easy and effective method was developed to gently disrupt the plant tissue and isolate individual vessel elements. These improved techniques are suitable to observe the intact morphology of vascular bundles in the grape, improve experimental efficiency and accelerate new discoveries on the anatomical structure of the grape.
基金This project was funded by the National Natural Science Foundation of China(41972161)the 2021 American Association of Petroleum Geologists Foundation Grants-in-Aid Program and Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103).
文摘To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances.
文摘This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical and geochemical methods.Four maceral compositions and several associated elements parameters were selected as indicators and corresponding diagrams were drawn to explicate the sedimentary environment.The results indicate that the maceral is dominated by vitrinite and minerals are mainly kaolinite in the No.6 coal.The sedimentary facies vary from barrier island system to tidal-flat which is a deposition process of water body shallowing and the coal-forming plants are herbs and woody plants formed in swamps.