期刊文献+
共找到278,209篇文章
< 1 2 250 >
每页显示 20 50 100
Exploration of Teaching Reform of Food Machinery and Equipment Course Based on New Engineering Concept
1
作者 Bingliang LIU Fangkun YU +2 位作者 Jie CHENG Yin ZHANG Dayu LIU 《Asian Agricultural Research》 2024年第7期53-55,共3页
The new engineering concept aims to train high-quality engineering talents to meet the needs of future science and technology and industrial development through the reform of education and teaching.Under the backgroun... The new engineering concept aims to train high-quality engineering talents to meet the needs of future science and technology and industrial development through the reform of education and teaching.Under the background of"new engineering",by introducing cutting-edge knowledge of the industry and interdisciplinary integration,adopting innovative teaching methods such as project-driven teaching and flipped classroom,strengthening experimental teaching and school-enterprise cooperation,and establishing comprehensive evaluation and feedback mechanism,Food Machinery and Equipment course is reformed to improve the teaching quality and train high-quality engineering talents to meet the needs of modern food processing industry. 展开更多
关键词 Teaching reform Food machinery and equipment Teaching innovation Teaching method
下载PDF
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
2
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
3
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
下载PDF
Five-phase Synchronous Reluctance Machines Equipped with a Novel Type of Fractional Slot Winding 被引量:1
4
作者 S.M.Taghavi Araghi A.Kiyoumarsi B.Mirzaeian Dehkordi 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期264-273,共10页
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are... Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation. 展开更多
关键词 Finite element analysis Five-phase machine Fractional slot concentrated winding(FSCW) machine slot/pole combination MMF harmonics Synchronous reluctance machine Winding factor
下载PDF
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
5
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening machine learning Explainable model CO_(2)cycloaddition
下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
6
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
Machine learning applications in healthcare clinical practice and research
7
作者 Nikolaos-Achilleas Arkoudis Stavros P Papadakos 《World Journal of Clinical Cases》 SCIE 2025年第1期16-21,共6页
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen... Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research. 展开更多
关键词 machine Learning Artificial INTELLIGENCE CLINICAL Practice RESEARCH Glomerular filtration rate Non-alcoholic fatty liver disease MEDICINE
下载PDF
Seismic design of variable cross-section damped steel support frame for post equipment
8
作者 Yang Zhenyu Ma Yuhong +2 位作者 Zhao Guifeng Feng Zhiwei Fu Mingyang 《Earthquake Engineering and Engineering Vibration》 2025年第1期155-167,共13页
High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped ... High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped steel support frame(VCDFS)with viscous dampers to reduce seismic responses of both tall and low-rise electrical equipment.The VCDFS contains a trapezoidal damper layer to generate rocking motions,enabling the diagonal viscous dampers to dissipate seismic inputs.A theoretical model of post equipment with VCDFS is established,and an optimal design procedure is proposed.The analysis shows that the remaining static stiffness ratio λ_(k) is the key parameter that determines the effectiveness of the VCDFS.The VCDFS reduces the average displacement and stress response of a post insulator by 39.4%and 44.6%,respectively,together with a significant decrease in the dynamic amplification factor.Therefore,it is recommended to use the VCDFS instead of the conventional latticed-steel frame in earthquake zones. 展开更多
关键词 electrical post equipment steel support frame passive control seismic performance upgrading
下载PDF
Machine learning and deep learning to improve prevention of anastomotic leak after rectal cancer surgery
9
作者 Francesco Celotto Quoc R Bao +2 位作者 Giulia Capelli Gaya Spolverato Andrew A Gumbs 《World Journal of Gastrointestinal Surgery》 2025年第1期25-31,共7页
Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly ma... Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly machine learning and deep learning,offer promising avenues for predicting and preventing AL.These technologies can analyze extensive clinical datasets to identify preoperative and perioperative risk factors such as malnutrition,body composition,and radiological features.AI-based models have demonstrated superior predictive power compared to traditional statistical methods,potentially guiding clinical decisionmaking and improving patient outcomes.Additionally,AI can provide surgeons with intraoperative feedback on blood supply and anatomical dissection planes,minimizing the risk of intraoperative complications and reducing the likelihood of AL development. 展开更多
关键词 Anastomotic leak Rectal cancer SURGERY machine learning Deep Learning
下载PDF
A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
10
作者 Bofei ZHANG Haipeng YU +5 位作者 Zeyong HU Ping YUE Zunye TANG Hongyu LUO Guantian WANG Shanling CHENG 《Advances in Atmospheric Sciences》 2025年第1期36-52,共17页
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume... Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China. 展开更多
关键词 observational constraint LightGBM seasonal prediction summer precipitation machine learning
下载PDF
Machine learning model using immune indicators to predict outcomes in early liver cancer
11
作者 Yi Zhang Ke Shi +1 位作者 Ying Feng Xian-Bo Wang 《World Journal of Gastroenterology》 2025年第5期43-56,共14页
BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery... BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery.AIM To develop predictive models utilizing machine learning(ML)methods to detect early-stage patients at a high risk of mortality.METHODS Eight hundred and eight patients with HCC at Beijing Ditan Hospital were randomly allocated to training and validation cohorts in a 2:1 ratio.Prognostic models were generated using random survival forests and artificial neural networks(ANNs).These ML models were compared with other classic HCC scoring systems.A decision-tree model was established to validate the contri-bution of immune-inflammatory indicators to the long-term outlook of patients with early-stage HCC.RESULTS Immune-inflammatory markers,albumin-bilirubin scores,alpha-fetoprotein,tumor size,and International Normalized Ratio were closely associated with the 5-year survival rates.Among various predictive models,the ANN model gene-rated using these indicators through ML algorithms exhibited superior perfor-mance,with a 5-year area under the curve(AUC)of 0.85(95%CI:0.82-0.88).In the validation cohort,the 5-year AUC was 0.82(95%CI:0.74-0.85).According to the ANN model,patients were classified into high-risk and low-risk groups,with an overall survival hazard ratio of 7.98(95%CI:5.85-10.93,P<0.0001)between the two cohorts.INTRODUCTION Hepatocellular carcinoma(HCC)is one of the six most prevalent cancers[1]and the third leading cause of cancer-related mortality[2].China has some of the highest incidence and mortality rates for liver cancer,accounting for half of global cases[3,4].The Barcelona Clinic Liver Cancer(BCLC)Staging System is the most widely used framework for diagnosing and treating HCC[5].The optimal candidates for surgical treatment are those with early-stage HCC,classified as BCLC stage 0 or A.Patients with early-stage liver cancer typically have a better prognosis after surgical resection,achieving a 5-year survival rate of 60%-70%[6].However,the high postoperative recurrence rates of HCC remain a major obstacle to long-term efficacy.To improve the prognosis of patients with early-stage HCC,it is necessary to develop models that can identify those with poor prognoses,enabling stratified and personalized treatment and follow-up strategies.Chronic inflammation is linked to the development and advancement of tumors[7].Recently,peripheral blood immune indicators,such as neutrophil-to-lymphocyte ratio(NLR),platelet-to-lymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),have garnered extensive attention and have been used to predict survival in various tumors and inflammation-related diseases[8-10].However,the relationship between these combinations of immune markers and the outcomes in patients with early-stage HCC require further investigation.Machine learning(ML)algorithms are capable of handling large and complex datasets,generating more accurate and personalized predictions through unique training algorithms that better manage nonlinear statistical relationships than traditional analytical methods.Commonly used ML models include artificial neural networks(ANNs)and random survival forests(RSFs),which have shown satisfactory accuracy in prognostic predictions across various cancers and other diseases[11-13].ANNs have performed well in identifying the progression from liver cirrhosis to HCC and predicting overall survival(OS)in patients with HCC[14,15].However,no studies have confirmed the ability of ML models to predict post-surgical survival in patients with early-stage HCC.Through ML,a better understanding of the risk factors for early-stage HCC prognosis can be achieved.This aids in surgical decision-making,identifying patients at a high risk of mortality,and selecting subsequent treatment strategies.In this study,we aimed to establish a 5-year prognostic model for patients with early-stage HCC after surgical resection,based on ML and systemic immune-inflammatory indicators.This model seeks to improve the early monitoring of high-risk patients and provide personalized treatment plans. 展开更多
关键词 Hepatocellular carcinoma Inflammation machine learning Prognosis Artificial neural networks Immune biomarkers
下载PDF
Machine learning based damage state identification:A novel perspective on fragility analysis for nuclear power plants considering structural uncertainties
12
作者 Zheng Zhi Wang Yong +1 位作者 Pan Xiaolan Ji Duofa 《Earthquake Engineering and Engineering Vibration》 2025年第1期201-222,共22页
Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NP... Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter. 展开更多
关键词 seismic fragility analysis damage state structural uncertainties machine learning sensitivity analysis
下载PDF
Machine learning prediction of hepatic encephalopathy for long-term survival after transjugular intrahepatic portosystemic shunt in acute variceal bleeding
13
作者 De-Jia Liu Li-Xuan Jia +9 位作者 Feng-Xia Zeng Wei-Xiong Zeng Geng-Geng Qin Qi-Feng Peng Qing Tan Hui Zeng Zhong-Yue Ou Li-Zi Kun Jian-Bo Zhao Wei-Guo Chen 《World Journal of Gastroenterology》 2025年第4期59-71,共13页
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is an effective intervention for managing complications of portal hypertension,particularly acute variceal bleeding(AVB).While effective in reducing portal... BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is an effective intervention for managing complications of portal hypertension,particularly acute variceal bleeding(AVB).While effective in reducing portal pressure and preventing rebleeding,TIPS is associated with a considerable risk of overt hepatic encephalopathy(OHE),a complication that significantly elevates mortality rates.AIM To develop a machine learning(ML)model to predict OHE occurrence post-TIPS in patients with AVB using a 5-year dataset.METHODS This retrospective single-center study included 218 patients with AVB who underwent TIPS.The dataset was divided into training(70%)and testing(30%)sets.Critical features were identified using embedded methods and recursive feature elimination.Three ML algorithms-random forest,extreme gradient boosting,and logistic regression-were validated via 10-fold cross-validation.SHapley Additive exPlanations analysis was employed to interpret the model’s predictions.Survival analysis was conducted using Kaplan-Meier curves and stepwise Cox regression analysis to compare overall survival(OS)between patients with and without OHE.RESULTS The median OS of the study cohort was 47.83±22.95 months.Among the models evaluated,logistic regression demonstrated the highest performance with an area under the curve(AUC)of 0.825.Key predictors identified were Child-Pugh score,age,and portal vein thrombosis.Kaplan-Meier analysis revealed that patients without OHE had a significantly longer OS(P=0.005).The 5-year survival rate was 78.4%,with an OHE incidence of 15.1%.Both actual OHE status and predicted OHE value were significant predictors in each Cox model,with model-predicted OHE achieving an AUC of 88.1 in survival prediction.CONCLUSION The ML model accurately predicts post-TIPS OHE and outperforms traditional models,supporting its use in improving outcomes in patients with AVB. 展开更多
关键词 Transjugular intrahepatic portosystemic shunt Acute variceal bleeding Overt hepatic encephalopathy machine learning Logistic regression
下载PDF
Trend Prediction Method Based on the Largest Lyapunov Exponent for Large Rotating Machine Equipments 被引量:5
14
作者 徐小力 朱春梅 张建民 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期433-436,共4页
In order to predict electromechanical equipments' nonlinear and non-stationary condition effectively, max Lyapunov exponent is introduced to the fault trend prediction of large rotating mechanical equipments based on... In order to predict electromechanical equipments' nonlinear and non-stationary condition effectively, max Lyapunov exponent is introduced to the fault trend prediction of large rotating mechanical equipments based on chaos theory. The predict method of chaos time series and two methods of proposing f and F are dis- cussed. The arithmetic of max prediction time of chaos time series is provided. Aiming at the key part of large rotating mechanical equipments-bearing, used this prediction method the simulation experiment is carried out. The result shows that this method has excellent performance for condition trend prediction. 展开更多
关键词 largest Lyapunov exponent large rotating machine equipments developing condition prediction
下载PDF
Precision Machining Equipment Fault Diagnosis Based on CWT and Improved ResNeXt
15
作者 Lichen Shi Jiahang Guo Haitao Wang 《Instrumentation》 2024年第2期36-43,共8页
A fault diagnosis method based on continuous wavelet transform and improved multi-dimensional residual network was proposed to solve the problem that the working environment of precision machining equipment is very co... A fault diagnosis method based on continuous wavelet transform and improved multi-dimensional residual network was proposed to solve the problem that the working environment of precision machining equipment is very complicated,and the fault characteristic signal is weak and hard to extract.Firstly,the best wavelet base Cmor 3-3 is selected by comparing 6 different wavelet base types.Secondly,continuous wavelet transform(CWT)is applied to the acquired original vibration signal to generate the feature map and process the gray level.Finally,the improved ResNeXt network is used to diagnose faults in precision machining equipment.The experimental results show that the proposed CWT and the improved ResNeXt algorithm have high accuracy in identifying precision machining equipment faults in complex environments,with an average accuracy of 99.4%。 展开更多
关键词 complex working environment ResNeXt precision working equipment
下载PDF
Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning 被引量:1
16
作者 ZHAO Zipiao ZHAO Yongli +1 位作者 YAN Boyuan WANG Dajiang 《ZTE Communications》 2022年第S01期7-15,共9页
As the fundamental infrastructure of the Internet,the optical network carries a great amount of Internet traffic.There would be great financial losses if some faults happen.Therefore,fault location is very important f... As the fundamental infrastructure of the Internet,the optical network carries a great amount of Internet traffic.There would be great financial losses if some faults happen.Therefore,fault location is very important for the operation and maintenance in optical networks.Due to complex relationships among each network element in topology level,each board in network element level,and each component in board level,the con-crete fault location is hard for traditional method.In recent years,machine learning,es-pecially deep learning,has been applied to many complex problems,because machine learning can find potential non-linear mapping from some inputs to the output.In this paper,we introduce supervised machine learning to propose a complete process for fault location.Firstly,we use data preprocessing,data annotation,and data augmenta-tion in order to process original collected data to build a high-quality dataset.Then,two machine learning algorithms(convolutional neural networks and deep neural networks)are applied on the dataset.The evaluation on commercial optical networks shows that this process helps improve the quality of dataset,and two algorithms perform well on fault location. 展开更多
关键词 optical network fault location supervised machine learning
下载PDF
Machines and Testing Equipment
17
《China's Refractories》 CAS 2007年第4期54-55,共2页
National Quality Supervision & Inspection Center for Refractories Business scope: Selective examination for national quality supervision; Identification of production license; Arbitration inspection and technical ac... National Quality Supervision & Inspection Center for Refractories Business scope: Selective examination for national quality supervision; Identification of production license; Arbitration inspection and technical achievements evaluation; Commodities inspection and otherquality inspections . 展开更多
关键词 TEST machines and Testing equipment
下载PDF
Hardware,Machines & Electrical Equipment From Wenzhou
18
《China's Foreign Trade》 1994年第10期18-18,共1页
Scissors and locks are famous products from Wenzhou. Now scissors from the city including multi-purpose, tailoring, tourist and special-purpose ones and exquisite fruit and artistic knives have entered the world marke... Scissors and locks are famous products from Wenzhou. Now scissors from the city including multi-purpose, tailoring, tourist and special-purpose ones and exquisite fruit and artistic knives have entered the world market. At the 展开更多
关键词 Hardware machines Electrical equipment From Wenzhou
下载PDF
Effects of Machine Parameter and Natural Factors on the Productivity of Loading and Haulage Equipment
19
作者 Martin Itoolwa Kulula Jide Muili Akande 《Journal of Minerals and Materials Characterization and Engineering》 2018年第1期139-153,共15页
The purpose of this research is to investigate the factors which affect the performance of the loading and hauling equipment at Skorpion zinc mine, Namibia and also to find possible solutions to eliminate them, so tha... The purpose of this research is to investigate the factors which affect the performance of the loading and hauling equipment at Skorpion zinc mine, Namibia and also to find possible solutions to eliminate them, so that the weekly Zinc Oxide and ex-pit waste tonnages required could be produced. This is due to the high demand of Zinc on the market. The investigation on road conditions was focused on the effects of rolling resistance, grade resistance and road widths from the road between bench 540 in pit 103 to the Zinc oxide medium grade stockpile. Cycle time data were obtained by time and motion study of the load/haul/dump cycle from bench 540 loading site to the stockpile. The data used for equipment matching by queuing theory (excel modelling) was obtained when the loaders where loading Arkose at different loading sites. The effects of different weather conditions i.e. mist, rain and wind on production where determined by collecting actual shift production tonnages and comparing with target shift production targets during this conditions. The results produced from time and motion studies show that the haul trucks have an average availability of 80.4% and utilization at 49.7% which are very low when compared to the benchmark value of 89% and 69% for availability and utilization respectively. Decline in performance time is caused by factors such as daily safety meetings, lunch breaks, blasting, tools break down and the daily machine service. Rolling resistance is also one of the factors affecting production time at the mine. The rolling resistance of different segments was determined by roughness defect scores (RDS). From calculations, it is clearly seen that if the RR could be reduced to 2% on every road segment, then each cycle period per truck can be reduced by 1.24 minutes. This will increase the production of the haulers and decrease the operating cost. It was recommended that the wearing course of the road surface be treated with a bitumen based dust suppression product in order to keep the surface’s rolling resistance to an absolute minimum (i.e. RR = 2%) [1]. The current average hauling road width is 15.987 m while the correct road width at Skorpion Zinc Mine must be 21.35 m to prevent bunching of trucks. It is therefore recommended that the haul roads be widened to 21.35 m width per segment. 展开更多
关键词 Utilization ROLLING Resistance PRODUCTIVITY equipment Matching UNIAXIAL COMPRESSIVE Strength WEATHER Conditions
下载PDF
Identifying Industrial Control Equipment Based on Rule Matching and Machine Learning
20
作者 Yuhao Wang Yuying Li +1 位作者 Yanbin Sun Yu Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期577-605,共29页
To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the att... To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the attack path canbe cut off,security threats canbe effectively avoided and the stable operationof the Internet canbe ensured.The existing rule-matching method for equipment identification has limitations such as relying on experience and low scalability.This paper proposes an industrial control device identification method based on PCA-Adaboost,which integrates rule matching and machine learning.We first build a rule base from network data collection and then use single andmulti-protocol rule-matchingmethods to identify the type of industrial control devices.Finally,we utilize PCA-Adaboost to identify unlabeled data.The experimental results show that the recognition rate of this method is better than that of the traditional Nmap device recognitionmethod and the device recognition accuracy rate reaches 99%.The evaluation effect of the test data set is significantly enhanced. 展开更多
关键词 Network mapping network resource industrial control equipment IDENTIFICATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部