期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
1
作者 P.S.Arthy A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1381-1393,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
2
作者 P.S.Arthy A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2959-2971,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
Performance evaluation of DHRR-RIS based HP design using machine learning algorithms
3
作者 Girish Kumar N G Sree Ranga Raju M N 《Intelligent and Converged Networks》 EI 2023年第3期237-260,共24页
Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and ... Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and high energy consumption,leading to complex Hybrid Precoding(HP)designs.To address these issues,we propose a new low-complexity HP model,named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding(DHRR-RIS-HP).Our approach combines active and passive elements to cancel out the downsides of both conventional designs.We first design a DHRR-RIS and optimize the pilot and Channel State Information(CSI)estimation using an adaptive threshold method and Adaptive Back Propagation Neural Network(ABPNN)algorithm,respectively,to reduce the Bit Error Rate(BER)and energy consumption.To optimize the data stream,we cluster them into private and public streams using Enhanced Fuzzy C-Means(EFCM)algorithm,and schedule them based on priority and emergency level.To maximize the sum rate and SE,we perform digital precoder optimization at the Base Station(BS)side using Deep Deterministic Policy Gradient(DDPG)algorithm and analog precoder optimization at the DHRR-RIS using Fire Hawk Optimization(FHO)algorithm.We implement our proposed work using MATLAB R2020a and compare it with existing works using several validation metrics.Our results show that our proposed work outperforms existing works in terms of SE,Weighted Sum Rate(WSR),and BER. 展开更多
关键词 Reconfigurable Intelligent Surfaces(RIS) Dynamic Hybrid Relay Reflecting(DHRR)-RIS Multi User Multiple Input Multiple Output(MU-MIMO) hybrid precoder machine learning and deep learning algorithms channel state estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部