BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p...BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.展开更多
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ...The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
Machine learning models were used to improve the accuracy of China Meteorological Administration Multisource Precipitation Analysis System(CMPAS)in complex terrain areas by combining rain gauge precipitation with topo...Machine learning models were used to improve the accuracy of China Meteorological Administration Multisource Precipitation Analysis System(CMPAS)in complex terrain areas by combining rain gauge precipitation with topographic factors like altitude,slope,slope direction,slope variability,surface roughness,and meteorological factors like temperature and wind speed.The results of the correction demonstrated that the ensemble learning method has a considerably corrective effect and the three methods(Random Forest,AdaBoost,and Bagging)adopted in the study had similar results.The mean bias between CMPAS and 85%of automatic weather stations has dropped by more than 30%.The plateau region displays the largest accuracy increase,the winter season shows the greatest error reduction,and decreasing precipitation improves the correction outcome.Additionally,the heavy precipitation process’precision has improved to some degree.For individual stations,the revised CMPAS error fluctuation range is significantly reduced.展开更多
In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-vio...In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.展开更多
Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.I...Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.In the present paper,several machine learning models were applied to predict the torsional capacity of RC members.Experimental results of a total of 287 torsional specimens were collected through an overall literature review.Algorithms of extreme gradient boosting machine(XGBM),random forest regression,back propagation artificial neural network and support vector machine,were trained and tested by 10-fold cross-validation method.Predictive performances of proposed machine learning models were evaluated and compared,both with each other and with the calculated results of existing design codes,i.e.,GB 50010,ACI 318-19,and Eurocode 2.The results demonstrated that better predictive performance was achieved by machine learning models,whereas GB 50010 slightly overestimated the torsional capacity,and ACI 318-19 and Eurocode 2 underestimated it,especially in the case of ACI 318-19.The XGBM model gave the most favorable predictions with R^(2)=0.999,RMSE=1.386,MAE=0.86,andλ=0.976.Moreover,strength of concrete was the most sensitive input parameters affecting the reliability of the predictive model,followed by transverse-to-longitudinal reinforcement ratio and total reinforcement ratio.展开更多
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ...BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.展开更多
Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes...Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware.展开更多
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
This study aims to reveal the impacts of three important uncertainty issues in landslide susceptibility prediction(LSP),namely the spatial resolution,proportion of model training and testing datasets and selection of ...This study aims to reveal the impacts of three important uncertainty issues in landslide susceptibility prediction(LSP),namely the spatial resolution,proportion of model training and testing datasets and selection of machine learning models.Taking Yanchang County of China as example,the landslide inventory and 12 important conditioning factors were acquired.The frequency ratios of each conditioning factor were calculated under five spatial resolutions(15,30,60,90 and 120 m).Landslide and non-landslide samples obtained under each spatial resolution were further divided into five proportions of training and testing datasets(9:1,8:2,7:3,6:4 and 5:5),and four typical machine learning models were applied for LSP modelling.The results demonstrated that different spatial resolution and training and testing dataset proportions induce basically similar influences on the modeling uncertainty.With a decrease in the spatial resolution from 15 m to 120 m and a change in the proportions of the training and testing datasets from 9:1 to 5:5,the modelling accuracy gradually decreased,while the mean values of predicted landslide susceptibility indexes increased and their standard deviations decreased.The sensitivities of the three uncertainty issues to LSP modeling were,in order,the spatial resolution,the choice of machine learning model and the proportions of training/testing datasets.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
Background and aims:Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics.We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangi...Background and aims:Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics.We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangiopancreatography(ERCP)-confirmed choledocholithiasis and accordingly developed predictive machine learning models(MLMs).Methods:Clinical data of consecutive patients undergoing first-ever ERCP for suspected chol-edocholithiasis from 2015 to 2019 were abstracted from a prospectively-maintained database.Multiple logistic regression was used to identify predictors of ERCP-confirmed choledocholithiasis.MLMs were then trained to predict ERCP-confirmed choledocholithiasis using pre-ERCP ultrasound(US)imaging only as well as using all available noninvasive imaging(US,computed tomography,and/or magnetic reso-nance cholangiopancreatography).The diagnostic performance of American Society for Gastrointestinal Endoscopy(ASGE)“high-likelihood”criteria was compared to MLMs.Results:We identified 270 patients(mean age 46 years,62.2%female,73.7%Hispanic/Latino,59%with noninvasive imaging positive for choledocholithiasis)with native papilla who underwent ERCP for suspected choledocholithiasis,of whom 230(85.2%)were found to have ERCP-confirmed chol-edocholithiasis.Logistic regression identified choledocholithiasis on noninvasive imaging(odds ratio(OR)¼3.045,P¼0.004)and common bile duct(CBD)diameter on noninvasive imaging(OR¼1.157,P¼0.011)as predictors of ERCP-confirmed choledocholithiasis.Among the various MLMs trained,the random forest-based MLM performed best;sensitivity was 61.4%and 77.3%and specificity was 100%and 75.0%,using US-only and using all available imaging,respectively.ASGE high-likelihood criteria demonstrated sensitivity of 90.9%and specificity of 25.0%;using cut-points achieving this specificity,MLMs achieved sensitivity up to 97.7%.Conclusions:MLMs using age,sex,race/ethnicity,presence of diabetes,fever,body mass index(BMI),total bilirubin,maximum CBD diameter,and choledocholithiasis on pre-ERCP noninvasive imaging predict ERCP-confirmed choledocholithiasis with good sensitivity and specificity and outperform the ASGE criteria for patients with suspected choledocholithiasis.展开更多
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode...The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models.展开更多
Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context o...Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context of energy efficiency and conservation.Load classification is a key component of NILM that relies on different artificial intelligence techniques,e.g.,machine learning.This study employs different machine learning models for load classification and presents a comprehensive performance evaluation of the employed models along with their comparative analysis.Moreover,this study also analyzes the role of input feature space dimensionality in the context of classification performance.For the above purposes,an event-based NILM methodology is presented and comprehensive digital simulation studies are carried out on a low sampling real-world electricity load acquired from four different households.Based on the presented analysis,it is concluded that the presented methodology yields promising results and the employed machine learning models generalize well for the invisible diverse testing data.The multi-layer perceptron learning model based on the neural network approach emerges as the most promising classifier.Furthermore,it is also noted that it significantly facilitates the classification performance by reducing the input feature space dimensionality.展开更多
Technological advancements in recent decades have greatly transformed the field of material chemistry.Juxtaposing the accentuating energy demand with the pollution associated,urgent measures are required to ensure ene...Technological advancements in recent decades have greatly transformed the field of material chemistry.Juxtaposing the accentuating energy demand with the pollution associated,urgent measures are required to ensure energy maximization,while reducing the extended experimental time cycle involved in energy production.In lieu of this,the prominence of catalysts in chemical reactions,particularly energy related reactions cannot be undermined,and thus it is critical to discover and design catalyst,towards the optimization of chemical processes and generation of sustainable energy.Most recently,artificial intelligence(AI)has been incorporated into several fields,particularly in advancing catalytic processes.The integration of intensive data set,machine learning models and robotics,provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques.The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst,with extreme accuracy and swiftness comparable to a number of human researchers.Although,the utilization of robots in catalyst discovery is still in its infancy,in this review we summarize current sway of artificial intelligence in catalyst discovery,briefly describe the application of databases,machine learning models and robots in this field,with emphasis on the consolidation of these monomeric units into a tripartite flow process.We point out current trends of machine learning and hybrid models of first principle calculations(DFT)for generating dataset,which is integrable into autonomous flow process of catalyst discovery.Also,we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors.展开更多
Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although Eur...Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although European Centre for Medium-Range Weather Forecasts(ECMWF)provides grid prediction up to 240 hours,the coarse data are unable to meet high requirements of these major events.In this paper,we propose a method,called model residual machine learning(MRML),to generate grid prediction with high-resolution based on high-precision stations forecasting.MRML applies model output machine learning(MOML)for stations forecasting.Subsequently,MRML utilizes these forecasts to improve the quality of the grid data by fitting a machine learning(ML)model to the residuals.We demonstrate that MRML achieves high capability at diverse meteorological elements,specifically,temperature,relative humidity,and wind speed.In addition,MRML could be easily extended to other post-processing methods by invoking different techniques.In our experiments,MRML outperforms the traditional downscaling methods such as piecewise linear interpolation(PLI)on the testing data.展开更多
In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari'...In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari's experiment results. These experiments consist of two different 2D model tests in two wave flumes, in which the berm recession to different sea state and structural parameters have been studied. Irregular waves with a JONSWAP spectrum were used in both test series. A total of 412 test results were used to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession parameters. In this paper, a new set of equations for berm recession is derived using the M5' model tree as a machine learning approach. A comparison is made between the estimations by the new formula and the formulae recently given by other researchers to show the preference of new M5' approach.展开更多
Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus...Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission.During the on-going coronavirus outbreak,one of the major priorities for researchers is to discover effective solution.As important parts of the face are obscured,face identification and verification becomes exceedingly difficult.The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,to identify the problem of face masked identification.In the first stage,we are applying face mask detector to identify the face mask.Then,the proposed approach is applying to the datasets from Canadian Institute for Advanced Research10(CIFAR10),Modified National Institute of Standards and Technology Database(MNIST),Real World Masked Face Recognition Database(RMFRD),and Stimulated Masked Face Recognition Database(SMFRD).The proposed model is achieving recognition accuracy 99.82%with proposed dataset.This article employs the four pre-programmed models VGG16,VGG19,ResNet50 and ResNet101.To extract the deep features of faces with VGG16 is achieving 99.30%accuracy,VGG19 is achieving 99.54%accuracy,ResNet50 is achieving 78.70%accuracy and ResNet101 is achieving 98.64%accuracy with own dataset.The comparative analysis shows,that our proposed model performs better result in all four previous existing models.The fundamental contribution of this study is to monitor with face mask and without face mask to decreases the pace of corona virus and to detect persons using wearing face masks.展开更多
Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have dev...Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
文摘BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.
文摘The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.
基金Program of Science and Technology Department of Sichuan Province(2022YFS0541-02)Program of Heavy Rain and Drought-flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province(SCQXKJQN202121)Innovative Development Program of the China Meteorological Administration(CXFZ2021Z007)。
文摘Machine learning models were used to improve the accuracy of China Meteorological Administration Multisource Precipitation Analysis System(CMPAS)in complex terrain areas by combining rain gauge precipitation with topographic factors like altitude,slope,slope direction,slope variability,surface roughness,and meteorological factors like temperature and wind speed.The results of the correction demonstrated that the ensemble learning method has a considerably corrective effect and the three methods(Random Forest,AdaBoost,and Bagging)adopted in the study had similar results.The mean bias between CMPAS and 85%of automatic weather stations has dropped by more than 30%.The plateau region displays the largest accuracy increase,the winter season shows the greatest error reduction,and decreasing precipitation improves the correction outcome.Additionally,the heavy precipitation process’precision has improved to some degree.For individual stations,the revised CMPAS error fluctuation range is significantly reduced.
基金supported by grants from the National Natural Science Foundation of China(31771243)the Fok Ying Tong Education Foundation(141113)to Aiguo Chen.
文摘In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.
基金The authors are extremely grateful to the funds including the National Natural Science Foundation of China(Grant No.51808258)the Fundamental Research Funds for the Central Universities(No.2022QN1031).
文摘Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.In the present paper,several machine learning models were applied to predict the torsional capacity of RC members.Experimental results of a total of 287 torsional specimens were collected through an overall literature review.Algorithms of extreme gradient boosting machine(XGBM),random forest regression,back propagation artificial neural network and support vector machine,were trained and tested by 10-fold cross-validation method.Predictive performances of proposed machine learning models were evaluated and compared,both with each other and with the calculated results of existing design codes,i.e.,GB 50010,ACI 318-19,and Eurocode 2.The results demonstrated that better predictive performance was achieved by machine learning models,whereas GB 50010 slightly overestimated the torsional capacity,and ACI 318-19 and Eurocode 2 underestimated it,especially in the case of ACI 318-19.The XGBM model gave the most favorable predictions with R^(2)=0.999,RMSE=1.386,MAE=0.86,andλ=0.976.Moreover,strength of concrete was the most sensitive input parameters affecting the reliability of the predictive model,followed by transverse-to-longitudinal reinforcement ratio and total reinforcement ratio.
基金This study has been reviewed and approved by the Clinical Research Ethics Committee of Wenzhou Central Hospital and the First Hospital Affiliated to Wenzhou Medical University,No.KY2024-R016.
文摘BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.
文摘Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware.
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
基金This research is funded by the National Natural Science Foundation of China(41807285,41762020,51879127 and 51769014E)Natural Science Foundation of Hebei Province(D2022202005).
文摘This study aims to reveal the impacts of three important uncertainty issues in landslide susceptibility prediction(LSP),namely the spatial resolution,proportion of model training and testing datasets and selection of machine learning models.Taking Yanchang County of China as example,the landslide inventory and 12 important conditioning factors were acquired.The frequency ratios of each conditioning factor were calculated under five spatial resolutions(15,30,60,90 and 120 m).Landslide and non-landslide samples obtained under each spatial resolution were further divided into five proportions of training and testing datasets(9:1,8:2,7:3,6:4 and 5:5),and four typical machine learning models were applied for LSP modelling.The results demonstrated that different spatial resolution and training and testing dataset proportions induce basically similar influences on the modeling uncertainty.With a decrease in the spatial resolution from 15 m to 120 m and a change in the proportions of the training and testing datasets from 9:1 to 5:5,the modelling accuracy gradually decreased,while the mean values of predicted landslide susceptibility indexes increased and their standard deviations decreased.The sensitivities of the three uncertainty issues to LSP modeling were,in order,the spatial resolution,the choice of machine learning model and the proportions of training/testing datasets.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
基金J.H.Tabibian was supported in part by the United States National Center for Advancing Translational Sciences grant UL1 TR000135.
文摘Background and aims:Noninvasive predictors of choledocholithiasis have generally exhibited marginal performance characteristics.We aimed to identify noninvasive independent predictors of endoscopic retrograde cholangiopancreatography(ERCP)-confirmed choledocholithiasis and accordingly developed predictive machine learning models(MLMs).Methods:Clinical data of consecutive patients undergoing first-ever ERCP for suspected chol-edocholithiasis from 2015 to 2019 were abstracted from a prospectively-maintained database.Multiple logistic regression was used to identify predictors of ERCP-confirmed choledocholithiasis.MLMs were then trained to predict ERCP-confirmed choledocholithiasis using pre-ERCP ultrasound(US)imaging only as well as using all available noninvasive imaging(US,computed tomography,and/or magnetic reso-nance cholangiopancreatography).The diagnostic performance of American Society for Gastrointestinal Endoscopy(ASGE)“high-likelihood”criteria was compared to MLMs.Results:We identified 270 patients(mean age 46 years,62.2%female,73.7%Hispanic/Latino,59%with noninvasive imaging positive for choledocholithiasis)with native papilla who underwent ERCP for suspected choledocholithiasis,of whom 230(85.2%)were found to have ERCP-confirmed chol-edocholithiasis.Logistic regression identified choledocholithiasis on noninvasive imaging(odds ratio(OR)¼3.045,P¼0.004)and common bile duct(CBD)diameter on noninvasive imaging(OR¼1.157,P¼0.011)as predictors of ERCP-confirmed choledocholithiasis.Among the various MLMs trained,the random forest-based MLM performed best;sensitivity was 61.4%and 77.3%and specificity was 100%and 75.0%,using US-only and using all available imaging,respectively.ASGE high-likelihood criteria demonstrated sensitivity of 90.9%and specificity of 25.0%;using cut-points achieving this specificity,MLMs achieved sensitivity up to 97.7%.Conclusions:MLMs using age,sex,race/ethnicity,presence of diabetes,fever,body mass index(BMI),total bilirubin,maximum CBD diameter,and choledocholithiasis on pre-ERCP noninvasive imaging predict ERCP-confirmed choledocholithiasis with good sensitivity and specificity and outperform the ASGE criteria for patients with suspected choledocholithiasis.
基金funded by the National Natural Science Foundation of China (41807285)。
文摘The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models.
文摘Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context of energy efficiency and conservation.Load classification is a key component of NILM that relies on different artificial intelligence techniques,e.g.,machine learning.This study employs different machine learning models for load classification and presents a comprehensive performance evaluation of the employed models along with their comparative analysis.Moreover,this study also analyzes the role of input feature space dimensionality in the context of classification performance.For the above purposes,an event-based NILM methodology is presented and comprehensive digital simulation studies are carried out on a low sampling real-world electricity load acquired from four different households.Based on the presented analysis,it is concluded that the presented methodology yields promising results and the employed machine learning models generalize well for the invisible diverse testing data.The multi-layer perceptron learning model based on the neural network approach emerges as the most promising classifier.Furthermore,it is also noted that it significantly facilitates the classification performance by reducing the input feature space dimensionality.
基金Shenzhen-Hong Kong-Macao Technology Research Programme(Type C,202011033000145)Shenzhen Excellent Science and Technology Innovation Talent Training Project-Outstanding Youth Project(RCJC20200714114435061)Functional Materials Interfaces Genome(FIG)project.
文摘Technological advancements in recent decades have greatly transformed the field of material chemistry.Juxtaposing the accentuating energy demand with the pollution associated,urgent measures are required to ensure energy maximization,while reducing the extended experimental time cycle involved in energy production.In lieu of this,the prominence of catalysts in chemical reactions,particularly energy related reactions cannot be undermined,and thus it is critical to discover and design catalyst,towards the optimization of chemical processes and generation of sustainable energy.Most recently,artificial intelligence(AI)has been incorporated into several fields,particularly in advancing catalytic processes.The integration of intensive data set,machine learning models and robotics,provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques.The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst,with extreme accuracy and swiftness comparable to a number of human researchers.Although,the utilization of robots in catalyst discovery is still in its infancy,in this review we summarize current sway of artificial intelligence in catalyst discovery,briefly describe the application of databases,machine learning models and robots in this field,with emphasis on the consolidation of these monomeric units into a tripartite flow process.We point out current trends of machine learning and hybrid models of first principle calculations(DFT)for generating dataset,which is integrable into autonomous flow process of catalyst discovery.Also,we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors.
基金Project supported by the National Natural Science Foundation of China(Nos.12101072 and 11421101)the National Key Research and Development Program of China(No.2018YFF0300104)+1 种基金the Beijing Municipal Science and Technology Project(No.Z201100005820002)the Open Research Fund of Shenzhen Research Institute of Big Data(No.2019ORF01001)。
文摘Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although European Centre for Medium-Range Weather Forecasts(ECMWF)provides grid prediction up to 240 hours,the coarse data are unable to meet high requirements of these major events.In this paper,we propose a method,called model residual machine learning(MRML),to generate grid prediction with high-resolution based on high-precision stations forecasting.MRML applies model output machine learning(MOML)for stations forecasting.Subsequently,MRML utilizes these forecasts to improve the quality of the grid data by fitting a machine learning(ML)model to the residuals.We demonstrate that MRML achieves high capability at diverse meteorological elements,specifically,temperature,relative humidity,and wind speed.In addition,MRML could be easily extended to other post-processing methods by invoking different techniques.In our experiments,MRML outperforms the traditional downscaling methods such as piecewise linear interpolation(PLI)on the testing data.
文摘In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari's experiment results. These experiments consist of two different 2D model tests in two wave flumes, in which the berm recession to different sea state and structural parameters have been studied. Irregular waves with a JONSWAP spectrum were used in both test series. A total of 412 test results were used to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession parameters. In this paper, a new set of equations for berm recession is derived using the M5' model tree as a machine learning approach. A comparison is made between the estimations by the new formula and the formulae recently given by other researchers to show the preference of new M5' approach.
文摘Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission.During the on-going coronavirus outbreak,one of the major priorities for researchers is to discover effective solution.As important parts of the face are obscured,face identification and verification becomes exceedingly difficult.The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,to identify the problem of face masked identification.In the first stage,we are applying face mask detector to identify the face mask.Then,the proposed approach is applying to the datasets from Canadian Institute for Advanced Research10(CIFAR10),Modified National Institute of Standards and Technology Database(MNIST),Real World Masked Face Recognition Database(RMFRD),and Stimulated Masked Face Recognition Database(SMFRD).The proposed model is achieving recognition accuracy 99.82%with proposed dataset.This article employs the four pre-programmed models VGG16,VGG19,ResNet50 and ResNet101.To extract the deep features of faces with VGG16 is achieving 99.30%accuracy,VGG19 is achieving 99.54%accuracy,ResNet50 is achieving 78.70%accuracy and ResNet101 is achieving 98.64%accuracy with own dataset.The comparative analysis shows,that our proposed model performs better result in all four previous existing models.The fundamental contribution of this study is to monitor with face mask and without face mask to decreases the pace of corona virus and to detect persons using wearing face masks.
基金This research was funded by the National Natural Science Foundation of China(grant no.32271881).
文摘Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.