The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A...The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.展开更多
Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The r...Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.展开更多
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored a...In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored and strictly regulated. Accordingly, significant efforts have been devoted to study methane and dust dispersion in underground mines. In this study, methane emission and dust concentration are numerically investigated using a computational fluid dynamics(CFD) approach. Various possible scenarios of underground mine configurations are evaluated. The results indicate that the presence of continuous miner adversely affects the air flow and leads to increased methane and dust concentrations.Nevertheless, it is found that such negative effect can be minimized or even neutralized by operating the scrubber fan in suction mode. In addition, it was found that the combination of scrubber fan in suction mode and brattice results in the best performance in terms of methane and dust removal from the mining face.展开更多
A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infr...A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.展开更多
Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of us...Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of using the subtraction circuit to offset interference signals and conducts a simulation analysis.The above scheme,which is simple and easily realized,can improve the reliability of leakage protection device in traction motor.展开更多
Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And prob...Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51274251)
文摘The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.
文摘Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
基金financial support from McGill University-Canada and NSERC-Discovery Grant RGPIN-2015-03945
文摘In underground coal mines, uncontrolled accumulation of methane and fine coal dust often leads to serious incidents such as explosion. Therefore, methane and dust dispersion in underground mines is closely monitored and strictly regulated. Accordingly, significant efforts have been devoted to study methane and dust dispersion in underground mines. In this study, methane emission and dust concentration are numerically investigated using a computational fluid dynamics(CFD) approach. Various possible scenarios of underground mine configurations are evaluated. The results indicate that the presence of continuous miner adversely affects the air flow and leads to increased methane and dust concentrations.Nevertheless, it is found that such negative effect can be minimized or even neutralized by operating the scrubber fan in suction mode. In addition, it was found that the combination of scrubber fan in suction mode and brattice results in the best performance in terms of methane and dust removal from the mining face.
文摘A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.
文摘Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of using the subtraction circuit to offset interference signals and conducts a simulation analysis.The above scheme,which is simple and easily realized,can improve the reliability of leakage protection device in traction motor.
文摘Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.