Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In...Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated...An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.展开更多
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a...To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.展开更多
The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image ar...The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.展开更多
To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focuse...To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.展开更多
Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then ...Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, ll tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 ram. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.展开更多
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve...This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.展开更多
In this study, we established a dynamic morphological model using the accumulated thermal effectiveness and photosynthetic active radiation (PAR) (A-TEP), aiming to explore the relationship between muskmelon (Cuc...In this study, we established a dynamic morphological model using the accumulated thermal effectiveness and photosynthetic active radiation (PAR) (A-TEP), aiming to explore the relationship between muskmelon (Cucumis melo L.) fruit attributes and environmental factors. Muskmelon surface color was described by parameters of red, green, blue, hue, saturation and brightness (HSI). Three characteristic parameters, gray level co-occurrence matrix (GLCM), angular second moment (ASM), entropy, contrast, and the coverage rate were used to describe the process of muskmelon fruit netting formation. ASM was not significant difference during muskmelon fruit growth. The number and deep of netting stripes gradually increased with fruit growth. Coverage rate increased rapidly for 15-30 d after pollination. The vertical and horizontal diameters of muskmelon fruit were followed a logistic curve. And root mean squared errors (RMSE) between the simulated and measured vertical and horizontal diameters were 3.527 and 4.696 mm, respectively. RMSE of red, green, blue, saturation and brightness were 0.999, 2.690, 2.992, 0.033 and 5.51, respectively, and the RMSE for entropy, contrast and coverage rates were 0.077, 0.063 and 0.015, respectively, indicating a well consistent between measured and simulated values.展开更多
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate...When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.展开更多
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv...Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.展开更多
A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black backg...A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.展开更多
The objective of this study was to develop an online tool-wear-measurement scheme for small diameter end-mills based on machine vision to increase tool life and the production efficiency. The geometrical features of w...The objective of this study was to develop an online tool-wear-measurement scheme for small diameter end-mills based on machine vision to increase tool life and the production efficiency. The geometrical features of wear zone of each end mill were analyzed, and three tool wear criterions of small-diameter end mills were defined. With the uEye camera, macro lens and 3-axis micro milling machine, it was proved the feasibility of measuring flank wear with the milling tests on a 45# steel workpiece. The design of experiment (DOE) showed that Vc was the most remarkable effect factor for the flank wear of small-diameter end mill. The wear curve of the experiments of milling was very similar to the Taylor curve.展开更多
Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizati...Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization.展开更多
Tundish-covering flux bags can be depalletized and moved in the steel casting region using industrial robots and monocular vision simultaneously.An industrial robot mounted with a flexible vacuum sucker was used as th...Tundish-covering flux bags can be depalletized and moved in the steel casting region using industrial robots and monocular vision simultaneously.An industrial robot mounted with a flexible vacuum sucker was used as the executor.For a structured bag model,a visual scheme based on the support vector machine and the histogram of oriented gradients was adopted.The computer was trained using a number of sample bag images that relied on the feature recognition algorithm.Finally,the automatic stacking and moving of the flux bags were realized.展开更多
To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-...To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)the China Postdoctoral Science Foundation(2023M732789)+1 种基金the China Postdoctoral Innovative Talents Support Program(BX20230290)the Fundamental Research Funds for the Central Universities(xzy012022062).
文摘Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金supported by Earthquake Sciences Spark Programs of China Earthquake Administration(No.XH22020YA)Science Innovation Fund granted by the First Monitoring and Application Center of China Earthquake Administration(No.FMC202309).
文摘An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.
基金The National Natural Science Foundation of China(No.51175267)the Natural Science Foundation of Jiangsu Province(No.BK2010481)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20113219120004)China Postdoctoral Science Foundation(No.20100481148)the Postdoctoral Science Foundation of Jiangsu Province(No.1001004B)
文摘To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.
文摘The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.
基金supported by the State Administration of Forestry and Grass of the 948 Project of China(Grant No.2015-4-52)the support of the Fundamental Research Funds for the Central Universities(Grant No.2572017DB05)the support of the Natural Science Foundation of Heilongjiang Province(Grant No.C2017005)
文摘To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.
基金Supported by National Natural Science Foundation of China(Grant No51305031)
文摘Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, ll tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 ram. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.
基金supported by the Beijing Municipal Science and Technology Project,China (Z151100001015004)
文摘This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.
基金supported by the National Natural Science Foundation of China (31471411)the Shanghai Agriculture Applied Technology Development Program,China ((2017)3-8-4)
文摘In this study, we established a dynamic morphological model using the accumulated thermal effectiveness and photosynthetic active radiation (PAR) (A-TEP), aiming to explore the relationship between muskmelon (Cucumis melo L.) fruit attributes and environmental factors. Muskmelon surface color was described by parameters of red, green, blue, hue, saturation and brightness (HSI). Three characteristic parameters, gray level co-occurrence matrix (GLCM), angular second moment (ASM), entropy, contrast, and the coverage rate were used to describe the process of muskmelon fruit netting formation. ASM was not significant difference during muskmelon fruit growth. The number and deep of netting stripes gradually increased with fruit growth. Coverage rate increased rapidly for 15-30 d after pollination. The vertical and horizontal diameters of muskmelon fruit were followed a logistic curve. And root mean squared errors (RMSE) between the simulated and measured vertical and horizontal diameters were 3.527 and 4.696 mm, respectively. RMSE of red, green, blue, saturation and brightness were 0.999, 2.690, 2.992, 0.033 and 5.51, respectively, and the RMSE for entropy, contrast and coverage rates were 0.077, 0.063 and 0.015, respectively, indicating a well consistent between measured and simulated values.
基金This research was done as part of TEKES-funded PanFlow project and as part of a project OPTIMI funded by the Academy of Finland (grant number 117587) in Micro- and Nanosystems Research Group, Tampere University of Technology, Finland.
文摘When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.
基金Supported by the Fundamental Public Welfare Research Program of Zhejiang Provincial Natural Science Foundation,China(LGN18C140007 and Y20C140024)the National High Technology Research and Development Program of China(863 Program,2013AA102402)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.
基金Project supported by the National Natural Science Foundation ofChina (No. 60008001) and the Natural Science Foundation of Zhe-jiang Province (No. 300297), China
文摘A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.
基金Supported by the Ministerial Level Advanced Research Foundation(51318020309)
文摘The objective of this study was to develop an online tool-wear-measurement scheme for small diameter end-mills based on machine vision to increase tool life and the production efficiency. The geometrical features of wear zone of each end mill were analyzed, and three tool wear criterions of small-diameter end mills were defined. With the uEye camera, macro lens and 3-axis micro milling machine, it was proved the feasibility of measuring flank wear with the milling tests on a 45# steel workpiece. The design of experiment (DOE) showed that Vc was the most remarkable effect factor for the flank wear of small-diameter end mill. The wear curve of the experiments of milling was very similar to the Taylor curve.
文摘Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization.
基金supported by National Key R&D Program of China( No. 2017YFB1303600)
文摘Tundish-covering flux bags can be depalletized and moved in the steel casting region using industrial robots and monocular vision simultaneously.An industrial robot mounted with a flexible vacuum sucker was used as the executor.For a structured bag model,a visual scheme based on the support vector machine and the histogram of oriented gradients was adopted.The computer was trained using a number of sample bag images that relied on the feature recognition algorithm.Finally,the automatic stacking and moving of the flux bags were realized.
文摘To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.