The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi...The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.展开更多
During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical propert...During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.展开更多
According to the characteristics of stone along the KKH-2 project in Pakistan, the applicability of gravel and machine-made sand for road engineering was studied. Through investigation, the types of stone along the pr...According to the characteristics of stone along the KKH-2 project in Pakistan, the applicability of gravel and machine-made sand for road engineering was studied. Through investigation, the types of stone along the project were relatively simple, and the stone materials used for road construction were mainly limestone, sandstone and pebbles, and the reserves?were?abundant. The experiment research and analyses comparisons of the parameters and road performance characteristics of natural gravel materials were carried out, and the design parameters and road performance indicators of natural grit in the current code were supplemented and adjusted to make it more suitable for Pakistan to use natural gravel materials for road construction. Thesis combines the project,?proposing that mechanism sand and natural sand mixed concrete?is?not inferior?tonatural sand mixed concrete in terms of technical performance, and the overall cost is lower than that of natural sand mixed concrete. The research results are of great significance for saving engineering construction costs, ensuring road performance and prolonging service life.展开更多
The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undraine...The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.展开更多
Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of...Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of green sand and transmission line theory,a method for rapidly measuring the moisture content of green sand by means of a low frequency multiprobe detector was proposed.A system was constructed,where six detectors with different arrangements and probes were designed.The experimental results showed that the voltage difference of transmission line increases with the increasing frequency before 29 MHz while decreases after 35 MHz.A voltage difference platform occurs in the range of 29-35 MHz,which is suitable for measuring the moisture content due to its insensitivity to frequency.The electric field intensity gradually decreases with the increase of the probe depth,and the intensity of central probe is always greater than that of the edge probe.When the distance of the probe away from the sand sample surface is 80 mm,the electric field intensity of the edge probe is found to be very weak.The optimal excitation frequency for measuring the moisture content of green sand is 29-33 MHz.The optimal detector is the one with one center probe and three edge probes,and their lengths are 80 mm and 60 mm,respectively.The distance between the center and edge probes is 25 mm,and the diameter of probes is 5 mm.Taking the voltage difference of transmission line,bentonite content,coal powder content and compactability as parameters of the input layer,and the moisture content as a parameter of the output layer,a three-layer BP artificial neural network model for predicting the moisture content of green sand was constructed according to the experimental results at 33 MHz.The prediction error of the model is not higher than 3.3% when the moisture content of green sand is within the range of 3wt.%-7wt.%.展开更多
It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and it...It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indi- cate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O-A ratios of HAs, TOCs and HA yields of bulk soil samples, neverthe- less, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O-A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and character- istics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution char- acteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the differentdistributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.展开更多
The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought abou...The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.展开更多
Sand dabs, an important commercial flatfish in the Bohai Sea, has recently decreased gradually in biomass, resulting from overfishing and marine pollution. Artificial culture and multiplication of sand dabs are essent...Sand dabs, an important commercial flatfish in the Bohai Sea, has recently decreased gradually in biomass, resulting from overfishing and marine pollution. Artificial culture and multiplication of sand dabs are essential and practical in China. The present paper examines the food habitof this fish to provide detailed information for its culture and multiplication.展开更多
The relation between the methylene blue (MB) value of MS and its limestone powder content and clay content was investigated. The effects of MB values ranging from 0.35 to 2.5 on the workability of fresh concrete, th...The relation between the methylene blue (MB) value of MS and its limestone powder content and clay content was investigated. The effects of MB values ranging from 0.35 to 2.5 on the workability of fresh concrete, the mechanical properties, the resistance to freezing as well as the resistance to chlorine ion permeation of the hardened concrete were all investigated. The experimental results showed that the MB value had no correlation with the limestone powder content of MS, while it was directly related to the clay content. With an increase of MB value, concrete workability decreased, as did the flexural and 7-day compressive strengths, however, the 28-day compressive strength was not affected. Furthermore, influence of MB value on concretes of different strength levels was different. For low-strength concretes, an increase of MB value could improve its impermeability, but this was not the case for high-strength concretes. Instead, their resistance to chloride ion permeability decreased slightly. However, even a slight increase in MB value remarkably accelerated freeze-thaw damage of MS concrete. It was thus concluded that the critical MB value of 1.4 would not cause significant deterioration in the performance of MS concretes.展开更多
Determination of the threshold shear velocity is essential for predicting sand transport,dust release and desertification.In this study,a wind tunnel experiment was conducted to evaluate the influence of salinity and ...Determination of the threshold shear velocity is essential for predicting sand transport,dust release and desertification.In this study,a wind tunnel experiment was conducted to evaluate the influence of salinity and moisture on the threshold shear velocity of saline sand.Saline sand samples(mean particle size of 164.50–186.08μm and the total silt,clay and salt content of 0.80%–8.25%)were collected from three saline sand dunes(one barchan dune and two linear dunes)in the Qarhan Desert,Qaidam Basin of China.Original saline sand samples were placed in two experimental trays for wet and dry processing to simulate deliquescence and desiccation,respectively.Surface moisture content ranging from 0.30% to 1.90% was generated by the steam method so that the saline sand can absorb water in a saturated water vapor environment.The motion of sand particles was determined by the observers with a solid laser.The laser sheet(0.80 cm thick),which was emitted by the solid laser,horizontally covered the sand surface and was bound to the sand.Results show that the cohesion of saline sand results from a combination of salt and water.The threshold shear velocity increases exponentially with the increase in crust thickness for the linear sand dunes.There is a positive linear correlation between the original moisture content and relative threshold shear velocity.The threshold shear velocity of dewatered sand is greater than that of wet sand with the same original moisture content.Our results will provide valuable information about the sand transport of highly saline soil in the desert.展开更多
Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of...Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.展开更多
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological s...Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological systems in arid areas.The spatial heterogeneity of soil water content is a major soil property,and a focus of soil science and hydrology.On the southern edge of the Tengger Desert,sample plots were selected from mobile sand dunes in desertified lands that had been enclosed for 5,15 and 25 years,respectively.This study explored the dynamic and spatial heterogeneity of soil water content in these different layers of soil that were also in the reversion process of desertification.The results showed that the soil water content of the mobile sand dunes was highest when in the initial stages of the reversion process of desertification,while the soil water content in the 0-20 cm,20-40 cm and 40-60 cm layers of soil was 1.769%,3.011%,and 2.967% respectively,presenting a restoring tendency after 25 years of enclosure.There were significant differences,as a whole,in the soil water content among different restoration stages and different soil layers,respectively.Changes in soil water content,in different soil layers,at different restoration stages,exhibited exponential or spherical patterns.The spatial distribution of soil water content exhibited a mosaic patch pattern with obvious spatial heterogeneity.The ratio of the heterogeneity of spatial autocorrelation to gross spatial heterogeneity was greater than 50%.The gross spatial heterogeneity of the 0-20 cm layer of soil improved gradually,while those of the 20-40 cm and 40-60 cm layers improved initially,then weakened in the reversion process of desertification.This study revealed that restoration with sand-binding vegetation reduced soil water content,and increased its spatial heterogeneity in arid areas.However,after 25 years of vegetation-soil system restoration,the soil water content started to increase and its spatial heterogeneity started to weaken.These results will further benefit the understanding of the ecological mechanism between soil water and sand-binding vegetation.展开更多
The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can...The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.展开更多
The tallest sand dune worldwide is located in the Badain Jaran Desert(BJD),China,and has been standing for thousands of years.Previous studies have conducted limited physical exploration and excavation on the formatio...The tallest sand dune worldwide is located in the Badain Jaran Desert(BJD),China,and has been standing for thousands of years.Previous studies have conducted limited physical exploration and excavation on the formation of sand dunes and have proposed three viewpoints,that is,bedrock control,wind dominance,and groundwater maintenance with no unified conclusion.Therefore,this study analyzed the underlying bedding structure of sand dunes in the BJD.Although the bedrock of sand dunes is uplifted and wind controls the shape of dunes,the main cause of dune formation is groundwater that maintains the deposition of calcareous sandstone and accumulation of aeolian sand.According to water transport model and vapor transports in the unsaturated zone of sand dunes,capillary water transport height is limited with film water constituting the main form of water in dunes.Chemical properties and temperature of groundwater showed that aquifers in different basins receive relatively independent recharge from deep sources in the crater.Result of dune formation mechanism is of considerable importance in understanding groundwater circulation and provides a new perspective on water management in arid desert areas.展开更多
The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance...The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment.展开更多
Moulding Sand for metal casting is usually sourced from either natural deposit or synthetic mix of refractory sand grain binder and moisture. Each of the mix constituent is important in determining the characteristics...Moulding Sand for metal casting is usually sourced from either natural deposit or synthetic mix of refractory sand grain binder and moisture. Each of the mix constituent is important in determining the characteristics of sand. The binding agent is responsible for bendability thereby determining the size of voids within the sand grain, while moisture level determines the plasticity of the foundry sand. Tests using American Foundry Society (AFS) Standard were followed in carrying out the experiment on Fori sand deposit to determine its suitability for foundry use. The sand was collected from the river bank of Fori, in Fori Community, Maiduguri, Borno State. The experimental test equipment includes: laboratory sand mixer, sand rammer, universal strength testing machine, permeability-meter, oven, mouldability machine, and as well as quick moisture teller. The chemical composition of the materials was carried out using atomic absorption spectrophotometer (AAS) model PG990AFG. The silica content in the material sample is about 78.65%, and with the traces of other elements, such as CaO (1.07%), Fe<sub>2</sub>O<sub>3</sub> (0.76%), Al<sub>2</sub>O<sub>3</sub> (15.81%), MgO (1.01%), TiO<sub>2 </sub>(2.21%), K<sub>2</sub>O (3.87%), and Na<sub>2</sub>O (1.16%), respectively. These percentages are within acceptable limits. The results of the physical properties revealed that the sand sample has clay content of 15.32% which is above the standard range of 10% - 12% recommended for natural moulding sands required for producing good quality castings. Other foundry properties of Forinatural moulding sand conducted include “moisture content” in the following ranges of percentages, 7.6%, 6.5%, 5.8%, 4.2% and 2.9% with the corresponding value of green compressive strength of (43.95, 53.47, 69.56, 68.21 and 61.16 KN/m<sup>2</sup>), dry compressive strength (93.50, 96.52, 105.50, 146.50 and 152.49 KN/m<sup>2</sup>), and permeability No. of 340, 390, 410, 430 and 440 respectively. It is clear from the test that, the lower the moisture content, the higher the dry compressive strength of the materials. The refractoriness value of the materials is 1400 ℃. The results of the physical and other foundry properties carried out show that Forisilica sand is suitable for casting non-ferrous alloys like bronze, brass and aluminium, and cast iron.展开更多
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ...Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.展开更多
This research objective is to propose a co-valorization of powdered tuff, containing a slight amount of clay and dune sand, by mixing the two substances at different rates such as 0%, 5%, 15%, 25% and 35% of sand. The...This research objective is to propose a co-valorization of powdered tuff, containing a slight amount of clay and dune sand, by mixing the two substances at different rates such as 0%, 5%, 15%, 25% and 35% of sand. The adapted criteria formulas are those recommended by the technical Saharan road. The results of the proposed study showed that "tuff-sand" mixtures are denser with a lower optimum water content modified proctor, the fine rate decreases together with the plasticity index, whereas the bearing index (CBR: California bearing ratio test) increases. The intrinsic characteristics, cohesion and sensitivity of mixtures with respect to compactness are almost identical to those oftuffwithout addition. The optimal adapted sand incorporation rate is estimated at 25% at 96% of compactness. Under these conditions, the amount of fines decreases from 40% to an acceptable level of 25% and the plasticity index from 16.2 to 12. The compaction water content decreases by 36% and the CBR (bearing index) increases by 30% and the compressive strength and sensitivity, according to compactness, of the elaborated material are almost identical to those oftuffwithout addition.展开更多
基金sponsored by Major Science and Technology Special Project of CNPC(Grant No.2023ZZ07)。
文摘The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.
基金supported by the National Natural Science Foundation of China (Grant No. 52372425)the Fundamental Research Funds for the Central Universities (Science and Technology Leading Talent Team Poject) Grant No. 2022JBXT010。
文摘During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.
文摘According to the characteristics of stone along the KKH-2 project in Pakistan, the applicability of gravel and machine-made sand for road engineering was studied. Through investigation, the types of stone along the project were relatively simple, and the stone materials used for road construction were mainly limestone, sandstone and pebbles, and the reserves?were?abundant. The experiment research and analyses comparisons of the parameters and road performance characteristics of natural gravel materials were carried out, and the design parameters and road performance indicators of natural grit in the current code were supplemented and adjusted to make it more suitable for Pakistan to use natural gravel materials for road construction. Thesis combines the project,?proposing that mechanism sand and natural sand mixed concrete?is?not inferior?tonatural sand mixed concrete in terms of technical performance, and the overall cost is lower than that of natural sand mixed concrete. The research results are of great significance for saving engineering construction costs, ensuring road performance and prolonging service life.
基金Natural Science Foundation of Jiangsu Province of China under Grant No.BK2012810
文摘The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.
基金financially supported by the National Natural Science Foundation of China (Grant No.51975165)。
文摘Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of green sand and transmission line theory,a method for rapidly measuring the moisture content of green sand by means of a low frequency multiprobe detector was proposed.A system was constructed,where six detectors with different arrangements and probes were designed.The experimental results showed that the voltage difference of transmission line increases with the increasing frequency before 29 MHz while decreases after 35 MHz.A voltage difference platform occurs in the range of 29-35 MHz,which is suitable for measuring the moisture content due to its insensitivity to frequency.The electric field intensity gradually decreases with the increase of the probe depth,and the intensity of central probe is always greater than that of the edge probe.When the distance of the probe away from the sand sample surface is 80 mm,the electric field intensity of the edge probe is found to be very weak.The optimal excitation frequency for measuring the moisture content of green sand is 29-33 MHz.The optimal detector is the one with one center probe and three edge probes,and their lengths are 80 mm and 60 mm,respectively.The distance between the center and edge probes is 25 mm,and the diameter of probes is 5 mm.Taking the voltage difference of transmission line,bentonite content,coal powder content and compactability as parameters of the input layer,and the moisture content as a parameter of the output layer,a three-layer BP artificial neural network model for predicting the moisture content of green sand was constructed according to the experimental results at 33 MHz.The prediction error of the model is not higher than 3.3% when the moisture content of green sand is within the range of 3wt.%-7wt.%.
基金supported by National Major Research Program of China(2013CB956702)the National Science Foundation of China(41273149,41173129)+1 种基金the Science Foundation of Guizhou Province(20113109)the 100-Talent Program of CAS
文摘It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indi- cate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O-A ratios of HAs, TOCs and HA yields of bulk soil samples, neverthe- less, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O-A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and character- istics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution char- acteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the differentdistributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.
基金Founded by the National Natural Science Foundation of China(Nos.51279054 and 51279052)
文摘The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.
文摘Sand dabs, an important commercial flatfish in the Bohai Sea, has recently decreased gradually in biomass, resulting from overfishing and marine pollution. Artificial culture and multiplication of sand dabs are essential and practical in China. The present paper examines the food habitof this fish to provide detailed information for its culture and multiplication.
基金Funded by the National West Communication Construction Technology Project(No.200731822301-6)
文摘The relation between the methylene blue (MB) value of MS and its limestone powder content and clay content was investigated. The effects of MB values ranging from 0.35 to 2.5 on the workability of fresh concrete, the mechanical properties, the resistance to freezing as well as the resistance to chlorine ion permeation of the hardened concrete were all investigated. The experimental results showed that the MB value had no correlation with the limestone powder content of MS, while it was directly related to the clay content. With an increase of MB value, concrete workability decreased, as did the flexural and 7-day compressive strengths, however, the 28-day compressive strength was not affected. Furthermore, influence of MB value on concretes of different strength levels was different. For low-strength concretes, an increase of MB value could improve its impermeability, but this was not the case for high-strength concretes. Instead, their resistance to chloride ion permeability decreased slightly. However, even a slight increase in MB value remarkably accelerated freeze-thaw damage of MS concrete. It was thus concluded that the critical MB value of 1.4 would not cause significant deterioration in the performance of MS concretes.
基金funded by the National Natural Science Foundation of China(41601002,41871008)
文摘Determination of the threshold shear velocity is essential for predicting sand transport,dust release and desertification.In this study,a wind tunnel experiment was conducted to evaluate the influence of salinity and moisture on the threshold shear velocity of saline sand.Saline sand samples(mean particle size of 164.50–186.08μm and the total silt,clay and salt content of 0.80%–8.25%)were collected from three saline sand dunes(one barchan dune and two linear dunes)in the Qarhan Desert,Qaidam Basin of China.Original saline sand samples were placed in two experimental trays for wet and dry processing to simulate deliquescence and desiccation,respectively.Surface moisture content ranging from 0.30% to 1.90% was generated by the steam method so that the saline sand can absorb water in a saturated water vapor environment.The motion of sand particles was determined by the observers with a solid laser.The laser sheet(0.80 cm thick),which was emitted by the solid laser,horizontally covered the sand surface and was bound to the sand.Results show that the cohesion of saline sand results from a combination of salt and water.The threshold shear velocity increases exponentially with the increase in crust thickness for the linear sand dunes.There is a positive linear correlation between the original moisture content and relative threshold shear velocity.The threshold shear velocity of dewatered sand is greater than that of wet sand with the same original moisture content.Our results will provide valuable information about the sand transport of highly saline soil in the desert.
基金Project (41402260) supported by the National Natural Science Foundation of ChinaProject (20136101120006) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
基金supported by the National Natural Science Foundation of China(41061030)the "West Light" Talent Cultivation Program,the National Basic Research Program of China(2009CB421303)the National Key Technologies R&D Program of China (2006BAD26B0802 and 2007BAD46B03)
文摘Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological systems in arid areas.The spatial heterogeneity of soil water content is a major soil property,and a focus of soil science and hydrology.On the southern edge of the Tengger Desert,sample plots were selected from mobile sand dunes in desertified lands that had been enclosed for 5,15 and 25 years,respectively.This study explored the dynamic and spatial heterogeneity of soil water content in these different layers of soil that were also in the reversion process of desertification.The results showed that the soil water content of the mobile sand dunes was highest when in the initial stages of the reversion process of desertification,while the soil water content in the 0-20 cm,20-40 cm and 40-60 cm layers of soil was 1.769%,3.011%,and 2.967% respectively,presenting a restoring tendency after 25 years of enclosure.There were significant differences,as a whole,in the soil water content among different restoration stages and different soil layers,respectively.Changes in soil water content,in different soil layers,at different restoration stages,exhibited exponential or spherical patterns.The spatial distribution of soil water content exhibited a mosaic patch pattern with obvious spatial heterogeneity.The ratio of the heterogeneity of spatial autocorrelation to gross spatial heterogeneity was greater than 50%.The gross spatial heterogeneity of the 0-20 cm layer of soil improved gradually,while those of the 20-40 cm and 40-60 cm layers improved initially,then weakened in the reversion process of desertification.This study revealed that restoration with sand-binding vegetation reduced soil water content,and increased its spatial heterogeneity in arid areas.However,after 25 years of vegetation-soil system restoration,the soil water content started to increase and its spatial heterogeneity started to weaken.These results will further benefit the understanding of the ecological mechanism between soil water and sand-binding vegetation.
基金supported by the National Natural Science Foundation of China (Grant No. 50879033)the National Science Fund for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Grant No.J0730536)
文摘The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.
基金This work was funded by the National Natural Science Foundation of China(61771183).
文摘The tallest sand dune worldwide is located in the Badain Jaran Desert(BJD),China,and has been standing for thousands of years.Previous studies have conducted limited physical exploration and excavation on the formation of sand dunes and have proposed three viewpoints,that is,bedrock control,wind dominance,and groundwater maintenance with no unified conclusion.Therefore,this study analyzed the underlying bedding structure of sand dunes in the BJD.Although the bedrock of sand dunes is uplifted and wind controls the shape of dunes,the main cause of dune formation is groundwater that maintains the deposition of calcareous sandstone and accumulation of aeolian sand.According to water transport model and vapor transports in the unsaturated zone of sand dunes,capillary water transport height is limited with film water constituting the main form of water in dunes.Chemical properties and temperature of groundwater showed that aquifers in different basins receive relatively independent recharge from deep sources in the crater.Result of dune formation mechanism is of considerable importance in understanding groundwater circulation and provides a new perspective on water management in arid desert areas.
基金This study was financially supported by the Foundation Research Program[grant number UD170027GD]of the Agency for Defense Development and the Defense Acquisition Program Administration of the Republic of Korea.
文摘The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment.
文摘Moulding Sand for metal casting is usually sourced from either natural deposit or synthetic mix of refractory sand grain binder and moisture. Each of the mix constituent is important in determining the characteristics of sand. The binding agent is responsible for bendability thereby determining the size of voids within the sand grain, while moisture level determines the plasticity of the foundry sand. Tests using American Foundry Society (AFS) Standard were followed in carrying out the experiment on Fori sand deposit to determine its suitability for foundry use. The sand was collected from the river bank of Fori, in Fori Community, Maiduguri, Borno State. The experimental test equipment includes: laboratory sand mixer, sand rammer, universal strength testing machine, permeability-meter, oven, mouldability machine, and as well as quick moisture teller. The chemical composition of the materials was carried out using atomic absorption spectrophotometer (AAS) model PG990AFG. The silica content in the material sample is about 78.65%, and with the traces of other elements, such as CaO (1.07%), Fe<sub>2</sub>O<sub>3</sub> (0.76%), Al<sub>2</sub>O<sub>3</sub> (15.81%), MgO (1.01%), TiO<sub>2 </sub>(2.21%), K<sub>2</sub>O (3.87%), and Na<sub>2</sub>O (1.16%), respectively. These percentages are within acceptable limits. The results of the physical properties revealed that the sand sample has clay content of 15.32% which is above the standard range of 10% - 12% recommended for natural moulding sands required for producing good quality castings. Other foundry properties of Forinatural moulding sand conducted include “moisture content” in the following ranges of percentages, 7.6%, 6.5%, 5.8%, 4.2% and 2.9% with the corresponding value of green compressive strength of (43.95, 53.47, 69.56, 68.21 and 61.16 KN/m<sup>2</sup>), dry compressive strength (93.50, 96.52, 105.50, 146.50 and 152.49 KN/m<sup>2</sup>), and permeability No. of 340, 390, 410, 430 and 440 respectively. It is clear from the test that, the lower the moisture content, the higher the dry compressive strength of the materials. The refractoriness value of the materials is 1400 ℃. The results of the physical and other foundry properties carried out show that Forisilica sand is suitable for casting non-ferrous alloys like bronze, brass and aluminium, and cast iron.
文摘Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.
文摘This research objective is to propose a co-valorization of powdered tuff, containing a slight amount of clay and dune sand, by mixing the two substances at different rates such as 0%, 5%, 15%, 25% and 35% of sand. The adapted criteria formulas are those recommended by the technical Saharan road. The results of the proposed study showed that "tuff-sand" mixtures are denser with a lower optimum water content modified proctor, the fine rate decreases together with the plasticity index, whereas the bearing index (CBR: California bearing ratio test) increases. The intrinsic characteristics, cohesion and sensitivity of mixtures with respect to compactness are almost identical to those oftuffwithout addition. The optimal adapted sand incorporation rate is estimated at 25% at 96% of compactness. Under these conditions, the amount of fines decreases from 40% to an acceptable level of 25% and the plasticity index from 16.2 to 12. The compaction water content decreases by 36% and the CBR (bearing index) increases by 30% and the compressive strength and sensitivity, according to compactness, of the elaborated material are almost identical to those oftuffwithout addition.