期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Particle Swarm Optimization-Support Vector Machine Model for Machinery Fault Diagnoses in High-Voltage Circuit Breakers 被引量:11
1
作者 Xiaofeng Li Shijing Wu +2 位作者 Xiaoyong Li Hao Yuan Deng Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期104-113,共10页
According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the... According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the wavelet packet decomposition approach and support vector machines,a new diagnosis model is proposed for such fault diagnoses in this study.The vibration eigenvalue extraction is analyzed through wavelet packet decomposition,and a four-layer support vector machine is constituted as a fault classifier.The Gaussian radial basis function is employed as the kernel function for the classifier.The penalty parameter c and kernel parameterδof the support vector machine are vital for the diagnostic accuracy,and these parameters must be carefully predetermined.Thus,a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c andδfor the support vector machine in each layer are determined by the particle swarm algorithm.The validity of this fault diagnosis model is determined with a real dataset from the operation experiment.Moreover,comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented.The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models. 展开更多
关键词 HIGH-VOLTAGE circuit BREAKER machinery fault diagnosis WAVELET PACKET decomposition support vector machine
下载PDF
基于支持向量机的机械故障诊断方法研究 被引量:86
2
作者 张周锁 李凌均 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2002年第12期1303-1306,共4页
针对因缺少大量故障数据样本而制约机械故障智能诊断发展的问题,提出了一种基于支持向量机的机械故障诊断新方法,介绍了该方法的原理和算法,并利用模拟故障数据建立了多故障分类器.这种诊断方法只需要少量的时域故障数据样本来训练故障... 针对因缺少大量故障数据样本而制约机械故障智能诊断发展的问题,提出了一种基于支持向量机的机械故障诊断新方法,介绍了该方法的原理和算法,并利用模拟故障数据建立了多故障分类器.这种诊断方法只需要少量的时域故障数据样本来训练故障分类器,不必进行信号预处理以提取特征量,便可实现多故障的识别和诊断.测试结果表明,当数据样本中含有26%的噪声时,故障分类器仍然能正确分类多种故障.这种诊断方法具有算法简单、可对故障在线分类和故障分类能力强的优点. 展开更多
关键词 故障诊断 支持向量机 机械故障 多故障分类器 智能诊断方法 故障分类
下载PDF
基于局域波法和SVM模型的往复机械故障预测方法研究 被引量:10
3
作者 别锋锋 刘扬 +1 位作者 周国强 吕凤霞 《中国机械工程》 EI CAS CSCD 北大核心 2011年第6期687-691,共5页
针对往复机械系统工况的动态特性,提出了一种基于非平稳振动信号局域波分析和支持向量机(SVM)的故障预测方法。对于往复机械的振动监测信号,利用局域波法获得其中所包含的特征信息,以此作为预测模型的数据源;采用SVM作为预测手段,将局... 针对往复机械系统工况的动态特性,提出了一种基于非平稳振动信号局域波分析和支持向量机(SVM)的故障预测方法。对于往复机械的振动监测信号,利用局域波法获得其中所包含的特征信息,以此作为预测模型的数据源;采用SVM作为预测手段,将局域波时频谱中所包含的局域波分量特征信息作为预测控制模型的输入量。该方法应用于工程实践中,有效地提高了预测精度,并为设备的工况和剩余寿命定位提供了依据。 展开更多
关键词 局域波法 支持向量机 故障诊断 趋势预测 往复机械
下载PDF
基于支持向量机的机械系统状态组合预测模型研究 被引量:17
4
作者 王红军 张建民 徐小力 《振动工程学报》 EI CSCD 北大核心 2006年第2期242-245,共4页
提出了一种新的支持向量机(Support V ectorM ach ines,SVM)机械系统状态组合预测模型。应用FPE(F ina lP rinc ip le E rror)准则优化样本的维数,采用时域内的振动烈度和频域内的特征频率分量作为预测机械系统状态的敏感因子,构建了预... 提出了一种新的支持向量机(Support V ectorM ach ines,SVM)机械系统状态组合预测模型。应用FPE(F ina lP rinc ip le E rror)准则优化样本的维数,采用时域内的振动烈度和频域内的特征频率分量作为预测机械系统状态的敏感因子,构建了预测模型。支持向量机采用新型的结构风险最优化准则,预测能力强、鲁棒性好。采用径向基函数和ε损失函数,将该模型应用于实验台和旋转注水机组的状态预测,取得了较好的效果。这表明利用支持向量机的组合预测模型,可以降低设备维修代价,提高设备的安全性和可靠性。 展开更多
关键词 故障诊断 状态监测 机械系统 组合预测模型 支持向量机
下载PDF
基于支持向量机的多故障分类器及应用 被引量:34
5
作者 张周锁 李凌均 何正嘉 《机械科学与技术》 CSCD 北大核心 2004年第5期536-538,601,共4页
针对因缺少大量故障数据样本而制约机械故障智能诊断的问题 ,本文改进了支持向量机多故障分类算法 ,依据此算法建立了多故障分类器 ,并应用于汽轮发电机组的故障诊断。应用结果表明 ,不必进行信号预处理以提取特征量 ,只需要用少量的时... 针对因缺少大量故障数据样本而制约机械故障智能诊断的问题 ,本文改进了支持向量机多故障分类算法 ,依据此算法建立了多故障分类器 ,并应用于汽轮发电机组的故障诊断。应用结果表明 ,不必进行信号预处理以提取特征量 ,只需要用少量的时域故障数据样本建立故障分类器。该故障分类器可实现多故障的识别和诊断 ,并且具有算法简单。 展开更多
关键词 支持向量机 机械故障诊断 多故障分类器
下载PDF
局部切空间排列和支持向量机的故障诊断模型 被引量:46
6
作者 万鹏 王红军 徐小力 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第12期2789-2795,共7页
提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,... 提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,实现高维相空间中局部邻域参数的自适应选取,获得机电系统的故障特征。利用K折交叉验证和一对一法构造支持向量机多类故障分类器,采用径向基核函数支持向量机进行机电系统的故障诊断。应用于转子试验台的3种故障状态的识别并与其他故障诊断方法进行分析比较,结果表明基于局部切空间排列和支持向量机的机电系统故障诊断模型诊断精度可达到96.6667%,可以有效提取故障的敏感特征并解决机电系统故障样本缺乏的问题。 展开更多
关键词 机电系统 故障诊断 局部切空间排列算法 支持向量机 网格搜索
下载PDF
基于粒子群优化LS-WSVM的旋转机械故障诊断 被引量:24
7
作者 陈法法 汤宝平 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2747-2753,共7页
为了更好地进行旋转机械故障诊断,提出一种粒子群优化(particle swarm optimization,PSO)最小二乘小波支持向量机(least square wavelet support vector machine,LS-WSVM)的故障诊断模型。先将故障信号经验模式分解(empirical mode deco... 为了更好地进行旋转机械故障诊断,提出一种粒子群优化(particle swarm optimization,PSO)最小二乘小波支持向量机(least square wavelet support vector machine,LS-WSVM)的故障诊断模型。先将故障信号经验模式分解(empirical mode decomposition,EMD)为多个内禀模态分量(intrinsic mode function,IMF)之和,再提取表征故障特征的IMF分量能量构造特征向量输入到PSO优化的LS-WSVM进行故障模式识别。EMD分解可自适应提取故障特征信号,PSO参数优化可快速准确得到LS-WSVM的全局最优参数,提高LS-WSVM的故障诊断精度和自适应诊断能力。通过滚动轴承的故障模拟实验验证了该方法的有效性。 展开更多
关键词 粒子群 小波支持向量机 EMD分解 参数优化 旋转机械 故障诊断
下载PDF
运用在线贯序极限学习机的故障诊断方法 被引量:10
8
作者 尹刚 张英堂 +1 位作者 李志宁 程利军 《振动.测试与诊断》 EI CSCD 北大核心 2013年第2期325-329,345,共5页
针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测... 针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测数据加入训练样本,作为下一次预测的已知信息,建立在线贯序极限学习机分类模型,从而在最大程度上提高故障诊断的精度。试验结果表明,在线贯序极限学习机在故障分类准确率与支持向量机相近的条件下,参数选择简单且学习速度提高近200倍。 展开更多
关键词 极限学习机 在线神经网络 旋转机械 故障诊断 支持向量机
下载PDF
基于ELMD与改进SMSVM的机械故障诊断方法 被引量:14
9
作者 任世锦 潘剑寒 +2 位作者 李新玉 徐桂云 巩固 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第5期693-703,共11页
机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了... 机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。 展开更多
关键词 集成局部均值分解 稀疏表示 机械故障诊断 多尺度支持向量机
下载PDF
基于支持向量机的旋转机械故障诊断。 被引量:21
10
作者 赵冲冲 廖明夫 于潇 《振动.测试与诊断》 EI CSCD 2006年第1期53-57,共5页
把支持向量机应用于诊断旋转机械不平衡和转静碰摩故障,利用转子故障实验器分别对多项式和径向基核函数进行了实验比较,选取了不同振动参数作为特征量输入支持向量机进行学习和测试。结果表明,两种不同核函数的支持向量机在各种条件下... 把支持向量机应用于诊断旋转机械不平衡和转静碰摩故障,利用转子故障实验器分别对多项式和径向基核函数进行了实验比较,选取了不同振动参数作为特征量输入支持向量机进行学习和测试。结果表明,两种不同核函数的支持向量机在各种条件下所获得的最优故障诊断准确率很接近。这说明支持向量机的性能对结构(核函数)的依赖性很小,便于在工程中应用,但特征量的选取对故障诊断准确率影响很大。对于诊断不平衡和转静碰摩故障,一、二和三阶正、反进动量是最适合的故障诊断特征量。用正、反进动量构造出SV-进动图,可明确、形象地显示故障分类面,有助于诊断故障。 展开更多
关键词 旋转机械 故障诊断 支持向量机 SV-进动图
下载PDF
基于内禀模态奇异值分解和支持向量机的故障诊断方法 被引量:35
11
作者 程军圣 于德介 杨宇 《自动化学报》 EI CSCD 北大核心 2006年第3期475-480,共6页
提出了一种基于内禀模态(Intrinsic mode functions,简称IMFs)奇异值分解和支持向量机(Support vector machine,简称SVM)的故障诊断方法.采用经验模态分解(Empirical mode decomposition,简称EMD)方法对旋转机械故障振动信号进行分解,... 提出了一种基于内禀模态(Intrinsic mode functions,简称IMFs)奇异值分解和支持向量机(Support vector machine,简称SVM)的故障诊断方法.采用经验模态分解(Empirical mode decomposition,简称EMD)方法对旋转机械故障振动信号进行分解,将得到的若干个内禀模态分量自动形成初始特征向量矩阵,然后对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并进一步根据支持向量机分类器的输出结果来判断旋转机械的工作状态和故障类型.对齿轮振动信号的分析结果表明,即使在小样本情况下,基于内禀模态奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型. 展开更多
关键词 旋转机械 故障诊断 经验模态分解 内禀模态函数 奇异值分解 支持向量机
下载PDF
基于SVM的旋转机械故障诊断方法 被引量:8
12
作者 刘永斌 何清波 +1 位作者 张平 孔凡让 《计算机工程》 CAS CSCD 2012年第5期233-235,共3页
提取时域与频域共20个特征参数作为数据样本,选择适合旋转机械振动信号的径向基函数及相关参数,基于一对多法构造支持向量机(SVM)多类分类器,实现旋转机械滚动轴承的故障诊断。通过对振动信号特征进行训练与测试,并与BP神经网络进行对... 提取时域与频域共20个特征参数作为数据样本,选择适合旋转机械振动信号的径向基函数及相关参数,基于一对多法构造支持向量机(SVM)多类分类器,实现旋转机械滚动轴承的故障诊断。通过对振动信号特征进行训练与测试,并与BP神经网络进行对比结果表明,该SVM多类分类器可较好地解决小样本问题,在训练时间和识别正确率上均优于BP神经网络。 展开更多
关键词 支持向量机 特征提取 状态识别 故障诊断 旋转机械
下载PDF
一种基于支持向量机预测器模型的转子系统故障诊断方法 被引量:5
13
作者 于德介 陈淼峰 +1 位作者 程军圣 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2006年第7期696-699,共4页
提出了一种基于支持向量机回归预测模型的转子系统故障诊断方法。分别对转子系统振动信号建立支持向量机回归预测模型,利用回归预测模型对振动测试信号进行预测,计算各支持向量机回归预测模型的预测信号与真实信号的误差并计算信噪比,... 提出了一种基于支持向量机回归预测模型的转子系统故障诊断方法。分别对转子系统振动信号建立支持向量机回归预测模型,利用回归预测模型对振动测试信号进行预测,计算各支持向量机回归预测模型的预测信号与真实信号的误差并计算信噪比,通过比较各预测信号的信噪比来判断转子系统的工作状态和故障类型。实验结果表明,该方法能够有效地应用于转子系统的故障诊断。 展开更多
关键词 回归 预测 支持向量机 故障珍断 转子系统
下载PDF
二叉树支持向量机的旋转机械故障诊断 被引量:4
14
作者 朱新才 邓星 +2 位作者 周雄 胡腾飞 郭蕾 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期21-26,共6页
针对SVM二叉树多类分类优先级的确定问题,通过旋转机械故障实验平台和数据采集系统,采集旋转机械故障实验台转子正常、转子不平衡、转子不对中、转子轴承内圈裂缝、转子轴承外圈裂缝5种工况下的振动信号,进行零均值化处理;选择信号的主... 针对SVM二叉树多类分类优先级的确定问题,通过旋转机械故障实验平台和数据采集系统,采集旋转机械故障实验台转子正常、转子不平衡、转子不对中、转子轴承内圈裂缝、转子轴承外圈裂缝5种工况下的振动信号,进行零均值化处理;选择信号的主要频段进行信号重组,提取其时域无量纲特征值,利用并联式SVM的正检率大小确定SVM二叉树多类分类的优先级,进行故障类型的识别。通过实验,实现了训练样本的完全可分,说明此种方法的有效性。 展开更多
关键词 旋转机械 振动 信号重组 支持向量机 故障诊断
下载PDF
基于灰色支持向量机模型的滚动轴承故障诊断与预测方法 被引量:6
15
作者 王建华 亢太体 +2 位作者 刘志峰 赵成斌 谷力超 《北京工业大学学报》 CAS CSCD 北大核心 2015年第11期1693-1698,共6页
提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支... 提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树,判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与支持向量机实现故障预测的目的,突破传统算法不能有效预测轴承故障的局限性. 展开更多
关键词 滚动轴承 灰色模型 支持向量机 故障诊断 故障预测
下载PDF
基于支持向量机的径向基网络结构优化 被引量:7
16
作者 饶泓 虞国全 胡倩如 《计算机工程与应用》 CSCD 北大核心 2008年第5期67-69,78,共4页
为了解决径向基网络(RBFNN)结构设计的随机性,进一步优化RBF网络性能,提出一种基于支持向量机(SVM)的径向基网络结构优化方法。通过训练得到的SVM确定径向基网络的隐层节点个数、隐层权值和阈值;同时利用SVM对输入向量进行特征变换,进... 为了解决径向基网络(RBFNN)结构设计的随机性,进一步优化RBF网络性能,提出一种基于支持向量机(SVM)的径向基网络结构优化方法。通过训练得到的SVM确定径向基网络的隐层节点个数、隐层权值和阈值;同时利用SVM对输入向量进行特征变换,进一步对输入向量进行维数约简。通过齿轮箱的故障诊断实验表明,优化后的RBF网络具有更精简、稳定的网络结构,能得到更准确的诊断结果。 展开更多
关键词 支持向量机 径向基网络 特征变换 故障诊断
下载PDF
Laplacian双联最小二乘支持向量机用于早期故障诊断 被引量:6
17
作者 李锋 汤宝平 郭胤 《振动与冲击》 EI CSCD 北大核心 2017年第16期85-92,共8页
提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fis... 提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fisher判别分析(Enhanced Semi-Supervised Local Fisher Discriminant Analysis,ESSLFDA)将高维时、频域特征集约简为具有更好类区分度的低维特征向量,并输入到Lap-TLSSVM中进行早期故障诊断。Lap-TLSSVM引入了包含大量无标签数据信息的流形规则实现半监督学习;其目标函数只含等式约束条件,且用共轭梯度法求解目标函数的线性方程组以加速训练过程。所提出的方法在训练样本非常稀少的情况下具有较高的诊断精度和计算效率。深沟球轴承早期故障诊断实验验证了该方法的有效性。 展开更多
关键词 旋转机械 流形学习 Laplacian双联最小二乘支持向量机 半监督学习 故障诊断
下载PDF
机电设备故障诊断和趋势预测的支持向量机方法 被引量:6
18
作者 王红军 徐小力 《计算机工程与应用》 CSCD 北大核心 2005年第16期207-209,共3页
分析了支持向量机(Support Vector Machine-SVM)的分类和回归算法。对近年来SVM在设备故障诊断和趋势预测方面的应用进行了回顾,给出了SVM用于设备状态趋势预测的模型和算法。采用AR(Auto Regressive)模型和SVM模型进行实验台的振动烈... 分析了支持向量机(Support Vector Machine-SVM)的分类和回归算法。对近年来SVM在设备故障诊断和趋势预测方面的应用进行了回顾,给出了SVM用于设备状态趋势预测的模型和算法。采用AR(Auto Regressive)模型和SVM模型进行实验台的振动烈度的预测,表明SVM模型具有长区间预测精度高的特点。讨论了SVM在设备故障诊断和趋势预测研究的发展前景。 展开更多
关键词 设备故障诊断 故障趋势预示 支持向量机
下载PDF
基于支持向量机的旋转机械故障诊断 被引量:6
19
作者 刘亚娟 张晓芹 《计算机工程与设计》 CSCD 北大核心 2005年第12期3436-3438,共3页
为了解决旋转机械故障的在线诊断识别问题,用小波包从旋转机械的震动信号中提取特征向量,给出了一种基于支持向量机的故障诊断分类方法。该方法通过有限的学习样本,建立旋转机械故障特征与其运行状态之间的关系。利用获得的矿井提升机... 为了解决旋转机械故障的在线诊断识别问题,用小波包从旋转机械的震动信号中提取特征向量,给出了一种基于支持向量机的故障诊断分类方法。该方法通过有限的学习样本,建立旋转机械故障特征与其运行状态之间的关系。利用获得的矿井提升机减速箱齿轮数据建立了多级故障分类器,通过对样本的分类输出检验,验证了该故障诊断方法的可行性。 展开更多
关键词 支持向量机 小波包 故障分类 旋转机械 故障诊断
下载PDF
机电设备趋势状态的支持向量机智能预示 被引量:4
20
作者 王红军 张建民 徐小力 《机床与液压》 北大核心 2005年第5期170-172,共3页
将支持向量机用于某机组振动烈度的预示,并运用FPE(FinalPredictionError)准则优化嵌入维数,采用径向基函数和适当的损失函数,取得了较好的预测效果,证明该算法对机电设备运行状态的监测与故障趋势具有较好的预示能力。
关键词 设备故障 智能趋势预示 支持向量机 回归预测
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部