Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac...Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.展开更多
Order analysis is regarded as one of the most significant method for monitoring and analyzing rotational machinery for the phenomenon of " frequency smear".However,the order analysis based on resampling is a...Order analysis is regarded as one of the most significant method for monitoring and analyzing rotational machinery for the phenomenon of " frequency smear".However,the order analysis based on resampling is a signal processingwhich converts the constant time interval sampling into constant angle interval sampling,while with the variety of the rotational speed.The superiority of the order analysis is investigatedon implement of order analysis.Andthrough comparing the advantage and disadvantage between spectrum and order analysis,the paper will discuss the order analysis form a deep perspective.展开更多
Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed suc...Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.展开更多
To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery usin...To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.展开更多
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced ...Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced weight,radius,speed and position of the rotor disc on the unbalance in rotating machine are studied experimentally and analyzed by using Response Surface Methodology(RSM).RSM is a technique which consists of mathematical and statistical methods to develop the relationship between the inputs and outputs of a system by distinct functions.L27 Orthogonal Array(OA)was developed by using Design of Experiments(DOE)according to which experimentation has been carried out.Three accelerometer sensors were mounted to record the vibration responses(accelerations)in radially vertical,horizontal and axial directions.The responses recorded as root mean square values are then analysed using RSM.The relationship between response and operating factors has been established by developing a second order,non-linear mathematical model.Analysis of variance(ANOVA)has been performed for verification of the developed mathematical models.Results obtained from the analysis show that the unbalance weight and speed are most significant operating conditions that contribute the most to the effect the unbalance has on the rotating spindle.展开更多
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes...A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.展开更多
Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault ...Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers.展开更多
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ...Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.展开更多
This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotati...This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.展开更多
Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on ker...Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.展开更多
This paper presents the development of a network based real time condition monitoring system of rotating machinery. The system is built up in a double net structure consisting of local net (including client and server...This paper presents the development of a network based real time condition monitoring system of rotating machinery. The system is built up in a double net structure consisting of local net (including client and server) and intranet. The client serves as a field data collector and processor that samples the vibration signals and process parameters of a machine monitored in the net and processes the sampled data. The data collected by the client are transmitted to the server that processes the data further and provides the results of the diagnosis of each machine to any distant terminals through intranet or internet. Such a structure of the monitoring system is advantageous in safety, reliability and reasonably shares the existing net resources. In order to ensure real time transmission of the data, two procedures of data transmission, virtual channel and data pool, are developed and applied in the monitoring system. The experimental results show that the monitoring system works well and is suitable to monitor a large group of rotating machines.展开更多
A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d...A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not e...Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.展开更多
A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectivel...A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.展开更多
Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by th...Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by the application of nonlinear dynamics theory, and the system's response was obtained by the numerical integration approach. The effects of eccentricity, speed, lubricant viscosity, radius gap, bearing length and journal radius on the system's response have been studied by using an amplitude-frequency curve, three-dimensional spectrum and bifurcation, which provides a theoretical basis for the diagnosis of the oil whirl fault effectively in the rotor-bearing system supported by a sliding bearing.展开更多
A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibrat...A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.展开更多
This paper presents the dynamic motion response by rotor unbalance malfunctions and the restraints available to oppose these applied forces and corrective techniques that can be used to reduce the effects of mass unba...This paper presents the dynamic motion response by rotor unbalance malfunctions and the restraints available to oppose these applied forces and corrective techniques that can be used to reduce the effects of mass unbalance.The mass unbalance is the most common and frequent anomaly in rotating machines,and therefore,although there are many computer programs that solve many cases,we believe it is important to remember his theory here.About this subject should techniques for correcting unbalance problems described in this document be applied.And,more importantly,a tape is made without disassembling the machine,if the transducers described in this work are installed.展开更多
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
基金supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).
文摘Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.
文摘Order analysis is regarded as one of the most significant method for monitoring and analyzing rotational machinery for the phenomenon of " frequency smear".However,the order analysis based on resampling is a signal processingwhich converts the constant time interval sampling into constant angle interval sampling,while with the variety of the rotational speed.The superiority of the order analysis is investigatedon implement of order analysis.Andthrough comparing the advantage and disadvantage between spectrum and order analysis,the paper will discuss the order analysis form a deep perspective.
文摘Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50875056)
文摘To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
文摘Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced weight,radius,speed and position of the rotor disc on the unbalance in rotating machine are studied experimentally and analyzed by using Response Surface Methodology(RSM).RSM is a technique which consists of mathematical and statistical methods to develop the relationship between the inputs and outputs of a system by distinct functions.L27 Orthogonal Array(OA)was developed by using Design of Experiments(DOE)according to which experimentation has been carried out.Three accelerometer sensors were mounted to record the vibration responses(accelerations)in radially vertical,horizontal and axial directions.The responses recorded as root mean square values are then analysed using RSM.The relationship between response and operating factors has been established by developing a second order,non-linear mathematical model.Analysis of variance(ANOVA)has been performed for verification of the developed mathematical models.Results obtained from the analysis show that the unbalance weight and speed are most significant operating conditions that contribute the most to the effect the unbalance has on the rotating spindle.
基金This project is supported by National Natural Science Foundation of China(No.50075079).
文摘A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 52205100,52275111,and 52205101in part by the Natural Science Foundations of Guangdong Province-China under Grants 2023A1515012856in part by China Postdoctoral Science Foundation under Grant 2022M711197.
文摘Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers.
基金This paper is supported by the National Natural Science Foundation of China (NSFC) under Grant No.50775083
文摘Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50105004 and Naval Youth Science Foundation of China under Grant No.04-Equipment Office-236.
文摘This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.
基金National Natural Science Foundation of China(No.60504033)
文摘Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.
文摘This paper presents the development of a network based real time condition monitoring system of rotating machinery. The system is built up in a double net structure consisting of local net (including client and server) and intranet. The client serves as a field data collector and processor that samples the vibration signals and process parameters of a machine monitored in the net and processes the sampled data. The data collected by the client are transmitted to the server that processes the data further and provides the results of the diagnosis of each machine to any distant terminals through intranet or internet. Such a structure of the monitoring system is advantageous in safety, reliability and reasonably shares the existing net resources. In order to ensure real time transmission of the data, two procedures of data transmission, virtual channel and data pool, are developed and applied in the monitoring system. The experimental results show that the monitoring system works well and is suitable to monitor a large group of rotating machines.
文摘A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.
基金Supported by the National Natural Suience Foundation of China(No.51775030,91860126).
文摘Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.
基金Sci-Tech Planning Projects of Chongqing City,China(No.CSTC2007AA7003).
文摘A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper.
文摘Under the sliding bearing support for the rotor-bearing system, the dynamic model of a rotor-bearing system is established under the action of non-linear oil film force. The rotor-bearing system has been studied by the application of nonlinear dynamics theory, and the system's response was obtained by the numerical integration approach. The effects of eccentricity, speed, lubricant viscosity, radius gap, bearing length and journal radius on the system's response have been studied by using an amplitude-frequency curve, three-dimensional spectrum and bifurcation, which provides a theoretical basis for the diagnosis of the oil whirl fault effectively in the rotor-bearing system supported by a sliding bearing.
文摘A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.
文摘This paper presents the dynamic motion response by rotor unbalance malfunctions and the restraints available to oppose these applied forces and corrective techniques that can be used to reduce the effects of mass unbalance.The mass unbalance is the most common and frequent anomaly in rotating machines,and therefore,although there are many computer programs that solve many cases,we believe it is important to remember his theory here.About this subject should techniques for correcting unbalance problems described in this document be applied.And,more importantly,a tape is made without disassembling the machine,if the transducers described in this work are installed.