考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of...Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a se...This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a series of test setups and tests are devised and performed under different conditions. These tests explain the need for technological conditions realizing PW-ECM, and further explore the technological principles. The results from the tests demonstrate a successful removal of electrolytic slime by means of ultrasonic vibration of the workpiece. To ensure the stability and reliability of PW-ECM process, a new combined machining method of PW-ECM assisted with ultrasonic vibration (PW-ECM/USV) is devised. Trilateral and square cavities and holes as well as a group of English alphabets are worked out on a stainless steel plate. It is confirmed that PW-ECM will be probably an efficient new aviation precision machining method.展开更多
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int...Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.展开更多
With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher perf...With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.展开更多
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ...High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM.展开更多
The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin...The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.展开更多
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
文摘Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金Aeronautical Science Foundation of China (02H52049)
文摘This article proposes a precise and ecofriendly micromachining technology for aerospace application called electrochemical machining in pure water (PW-ECM). On the basis of the principles of water dissociation, a series of test setups and tests are devised and performed under different conditions. These tests explain the need for technological conditions realizing PW-ECM, and further explore the technological principles. The results from the tests demonstrate a successful removal of electrolytic slime by means of ultrasonic vibration of the workpiece. To ensure the stability and reliability of PW-ECM process, a new combined machining method of PW-ECM assisted with ultrasonic vibration (PW-ECM/USV) is devised. Trilateral and square cavities and holes as well as a group of English alphabets are worked out on a stainless steel plate. It is confirmed that PW-ECM will be probably an efficient new aviation precision machining method.
文摘Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.
基金supported by the National Natural Science Foundation of China(Nos.52035009,52105475).
文摘With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.
基金support of the Shenzhen Science and Technology Innovation Commission under Project Numbers KQTD20190929172505711,JSGG20210420091802007, and JCYJ20210324115413036Guangdong Provincial Department of Science and Technology under Project Number K22333004。
文摘High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM.
基金Supported by National Natural Science Foundation of China(Grant Nos.52175411 and 51205177)Jiangsu Provincial Natural Science Foundation(Grant Nos.BK20171307 and BK2012277).
文摘The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.