We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ...We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.展开更多
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ...This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.展开更多
The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear...The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu_(3.8)Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating.展开更多
Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ...Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.展开更多
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h...By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.展开更多
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether ...This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration.展开更多
The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of th...The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...展开更多
Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The exp...Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The experimental results indicate that La can improve the wettability between liquid aluminum and graphite ; the addition of La results in dispersive distribution of TiAl3 and TiC particles in the matrix. An excellent grain refining performance of Al-Ti-C grain refiner on commercially pure Al was obtained.展开更多
The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of t...The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate.展开更多
The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn_(0.32)Mn_(0.60-x)Ni_(x)Fe_(2.08)O_(4)were investigated.The calcined powder of Mn-Zn ferrite was characteri...The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn_(0.32)Mn_(0.60-x)Ni_(x)Fe_(2.08)O_(4)were investigated.The calcined powder of Mn-Zn ferrite was characterized by X-ray diffraction(XRD),the fracture surface of Mn-Zn ferrite was checked by scanning electronic microscope(SEM),and then the magnetic properties were measured.As a result,the substitution of Ni can cause the crystal lattice constant of MnZn ferrite to decline,and the grain size to decrease,therefore improve the magnetic performance of MnZn ferrite whose density exceeds 5.0 g·cm^(-3).展开更多
The weld formation, microstructure and mechanical performance of friction stir welded joints of AZ31 Mg alloy were investigated. The results show that the plastic flow of the material welded is improved and the caviti...The weld formation, microstructure and mechanical performance of friction stir welded joints of AZ31 Mg alloy were investigated. The results show that the plastic flow of the material welded is improved and the cavities disappear with increasing the rotation speed. With increasing the welding speed, the grain growth accompanied by the dynamic recrystallization in the weld nugget is restrained, and the structure of the grain becomes finer. The optimum technological parameters for the friction stir welding of 4mm AZ31 Mg alloy are as follows: rotation speed 1000r/min, and welding speed 45mm/min. The tensile strength coefficient of AZ31 Mg alloy is up to 63.7%. The brittle fracture of the joints belongs to the mixed fracture mode, the upper part of the weld is often brittle fracture, and the lower part is slight ductile fracture. The microhardness of the weld nugget is the lowest, that of the thermo-mechanical affected zone slightly increases, and that of the heat-affected zone is equal to that of the base metal.展开更多
In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compou...In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compound treatment device with different magnetic field strength(H=1, 1.25 and 1.5 T). The electromagnetic compound treatment method was proposed to couple pulsed magnetic field and pulsed current. The results show that after the pulsed magnetic field treatment, the values of the transverse rupture strength of the samples were respectively reduced by 21%, 20.6% and 20.1%;the cutting performance was decreased by about 4.5%, which means the tool life was decreased. After the electromagnetic compound treatment, the values of the transverse rupture strength of the rectangular samples were respectively increased by 8%, 8.6% and 9.5%, and the tool life was increased by 4.2%, 7% and 10.3%. After the electromagnetic compound treatment, the pulse current provided the driving force for dislocation motion. A strong pulse current driving force is more likely to make the dislocation multiply and slip. A high density dislocation cell is formed within the material, so the mechanical properties were significantly increased.展开更多
Diamond grinding wheel were prepared with Al-based bonding agent.The microstructure of Al-based diamond grinding wheel was observed by SEM.The fracture morphology,interface between bonding agent and diamond,and the el...Diamond grinding wheel were prepared with Al-based bonding agent.The microstructure of Al-based diamond grinding wheel was observed by SEM.The fracture morphology,interface between bonding agent and diamond,and the elemental distribution in bonding agent were studied.The results showed that there were some Al-based agents retained on the diamond surface.Ti,Ni formed intermetallurgy phase with Al in the agent and reduced the plasticity of bonding agent.The service life of this Al-based diamond grinding wheel is proved by the grinding experiments to be three times as long as that of resin-bonded grinding wheel.展开更多
A systematic study was conducted to comprehend the mechanism of thermal activation of silica-alumina materials by using ^29Si and ^27Al magnetic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The ...A systematic study was conducted to comprehend the mechanism of thermal activation of silica-alumina materials by using ^29Si and ^27Al magnetic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The reaction performance of silica-alumina-based materials with different molar ratios of Si/Al, which were thermally activated, was also investigated. With the increase in calcining temperature, the coordination of Al in metakaolin becomes four, five, and six firstly, and then transforms completely to four and six. It is indicated by identical coupled plasma optical emission spectroscopy (ICP) and NMR that, the reaction performance of monomeric silicate anions is better than that of polymeric silicate anions which are primarily cross-linked in the alkali solution. Moreover, it also shows that the thermal activation temperature, cooling method, and the molar ratio of Na/Ca have remarkable effects on the reaction performance.展开更多
Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of...Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of the solid solution phase increases and the fraction of secondary phase Mg17Al12 decreases. The almost single solid solution phase can be obtained with using liquid nitrogen as a coolant. The compressive strengths of the rapid solidified AZ91 magnesium alloys are higher than those of normal cast alloy, and decrease with increasing cooling rate. After artificial aging treatment for 14 h at 168℃, the compressive strength of the rapidly solidified AZ91 magnesium alloy cooled in liquid nitrogen increases from 253.5 to 335.3 MPa, while the compressive yield strength increases from 138.1 to 225.91 MPa. The improvement in the compressive strength of the rapidly solidified AZ91 magnesium alloys can be attributed to the hardening effect from fine secondary phase.展开更多
Through the DSC, XRD, SEM and other experimental methods, the microstructure characteristics of reactive powder concrete ( RPC) are discussed. The results show that RPC has a super high performance because of its lowe...Through the DSC, XRD, SEM and other experimental methods, the microstructure characteristics of reactive powder concrete ( RPC) are discussed. The results show that RPC has a super high performance because of its lower ratio of water-binder, high pack density, optimum hydration products mixture and being strengthened by steel fiber. The high performance results from the special hydration microstructure of RPC, and its super performance can be well explained by the centrum particle hypothesis.展开更多
In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fib...In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.展开更多
The Pb-free solders have attracted a great deal of attention recently due to the environmental concerns.The present work focuses on the effect of cobalt content(0,0.5 and 3.0)on the microstructural characteristics,mel...The Pb-free solders have attracted a great deal of attention recently due to the environmental concerns.The present work focuses on the effect of cobalt content(0,0.5 and 3.0)on the microstructural characteristics,melting point and corrosion performance of extruded Sn-9Zn solder alloys.The results reveal that the Zn-rich precipitates with spherical or needle-like shape in the Sn-9Zn-xCo alloys are refined remarkably by forming the γ-Co5Zn21 and Co2Sn2Zn Co-contained intermetallic compounds,though the melting point and eutectic reaction temperature decrease slightly.It is suggested that the corrosion property of the extruded Sn-9Zn-xCo alloys is improved significantly by adding the cobalt element,while the content should be controlled reasonably.Combining the corrosion morphology,the influence of cobalt content on the corrosion behavior of the Sn-9Zn-xCo alloys is analyzed in terms of the refined microstructure and the enhanced passive film stability.展开更多
LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing t...LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing the effects of cooling modes on the microstructure and electrochemical characteristics of the material. The results indicate that the water quenching mode can control overgrowth of the grain size of final product and improve its electrochemical performance compared with nature cooling mode and air quenching mode. The sample synthesized by using water quenching mode is of the highest reversible discharge specific capacity and the best cyclic electrochemical performance, demonstrating the first discharge capacity of 138.1 mA·h/g at 0.1C rate and the total loss of capacity of 3.11% after 20 cycles.展开更多
基金Funed by the National Natural Science Foundation of China(No.U21A20149)the Ecological Environment Scientific Research Project of Anhui Province(No.2023hb0014)+2 种基金the Research Reserve of Anhui Jianzhu University(No.2022XMK01)the Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No.2022AH010017)Research on the preparation technology of self compacting concrete with strength grade C100.
文摘We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
基金the financial supports provided by the National Natural Science Foundation of China(U2040222,52293431,and 52278259)。
文摘This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.
基金the financial support from the Gansu Provincial Natural Science Foundation (No. 20JR5RA471)the National Natural Science Foundation of China (No. 51365024)。
文摘The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu_(3.8)Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating.
基金the financial support from the Australian Research Council through the Discovery Project(DP110101653 and DP130103592)Basic and Applied Basic Research Foundation of Guangdong Province,China(2022A1515140123).
文摘Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.
基金Funded by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan Univesity of Technology。
文摘By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金The Scholarship Supported by the China Scholarship Councilthe Technical Research Program from NV Bekaert SA of Belgiumthe National Natural Science Foundation of China(No.50908047)
文摘This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration.
文摘The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...
基金Project supported by the Natural Science Foundation of Shanxi Province (20011047)Patent Generalization Project ofShanxi Province (051025)
文摘Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The experimental results indicate that La can improve the wettability between liquid aluminum and graphite ; the addition of La results in dispersive distribution of TiAl3 and TiC particles in the matrix. An excellent grain refining performance of Al-Ti-C grain refiner on commercially pure Al was obtained.
基金Project supported by National Natural Science Foundation of China (50131040) and Natural Science Foundation of Inner Mon-golia (200408020706)
文摘The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate.
基金This project was financially supported by the Ministry of Education of China(No.106138)Science and Technology Bureau of Sichuan Province(No.2006202-010-6).
文摘The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn_(0.32)Mn_(0.60-x)Ni_(x)Fe_(2.08)O_(4)were investigated.The calcined powder of Mn-Zn ferrite was characterized by X-ray diffraction(XRD),the fracture surface of Mn-Zn ferrite was checked by scanning electronic microscope(SEM),and then the magnetic properties were measured.As a result,the substitution of Ni can cause the crystal lattice constant of MnZn ferrite to decline,and the grain size to decrease,therefore improve the magnetic performance of MnZn ferrite whose density exceeds 5.0 g·cm^(-3).
文摘The weld formation, microstructure and mechanical performance of friction stir welded joints of AZ31 Mg alloy were investigated. The results show that the plastic flow of the material welded is improved and the cavities disappear with increasing the rotation speed. With increasing the welding speed, the grain growth accompanied by the dynamic recrystallization in the weld nugget is restrained, and the structure of the grain becomes finer. The optimum technological parameters for the friction stir welding of 4mm AZ31 Mg alloy are as follows: rotation speed 1000r/min, and welding speed 45mm/min. The tensile strength coefficient of AZ31 Mg alloy is up to 63.7%. The brittle fracture of the joints belongs to the mixed fracture mode, the upper part of the weld is often brittle fracture, and the lower part is slight ductile fracture. The microhardness of the weld nugget is the lowest, that of the thermo-mechanical affected zone slightly increases, and that of the heat-affected zone is equal to that of the base metal.
基金Funded by the National Natural Science Foundation of China(Nos.51575369&51675357)
文摘In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compound treatment device with different magnetic field strength(H=1, 1.25 and 1.5 T). The electromagnetic compound treatment method was proposed to couple pulsed magnetic field and pulsed current. The results show that after the pulsed magnetic field treatment, the values of the transverse rupture strength of the samples were respectively reduced by 21%, 20.6% and 20.1%;the cutting performance was decreased by about 4.5%, which means the tool life was decreased. After the electromagnetic compound treatment, the values of the transverse rupture strength of the rectangular samples were respectively increased by 8%, 8.6% and 9.5%, and the tool life was increased by 4.2%, 7% and 10.3%. After the electromagnetic compound treatment, the pulse current provided the driving force for dislocation motion. A strong pulse current driving force is more likely to make the dislocation multiply and slip. A high density dislocation cell is formed within the material, so the mechanical properties were significantly increased.
文摘Diamond grinding wheel were prepared with Al-based bonding agent.The microstructure of Al-based diamond grinding wheel was observed by SEM.The fracture morphology,interface between bonding agent and diamond,and the elemental distribution in bonding agent were studied.The results showed that there were some Al-based agents retained on the diamond surface.Ti,Ni formed intermetallurgy phase with Al in the agent and reduced the plasticity of bonding agent.The service life of this Al-based diamond grinding wheel is proved by the grinding experiments to be three times as long as that of resin-bonded grinding wheel.
基金supported by the National Key Technologies R&D Program of China (No.2006BAC21B03)the National Natural Science Foundation of China (No.50674062)
文摘A systematic study was conducted to comprehend the mechanism of thermal activation of silica-alumina materials by using ^29Si and ^27Al magnetic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The reaction performance of silica-alumina-based materials with different molar ratios of Si/Al, which were thermally activated, was also investigated. With the increase in calcining temperature, the coordination of Al in metakaolin becomes four, five, and six firstly, and then transforms completely to four and six. It is indicated by identical coupled plasma optical emission spectroscopy (ICP) and NMR that, the reaction performance of monomeric silicate anions is better than that of polymeric silicate anions which are primarily cross-linked in the alkali solution. Moreover, it also shows that the thermal activation temperature, cooling method, and the molar ratio of Na/Ca have remarkable effects on the reaction performance.
基金Project (2001BA311A03) Supponed by National Science and Technique Foundation during the 10th Five-Year Plan Period
文摘Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of the solid solution phase increases and the fraction of secondary phase Mg17Al12 decreases. The almost single solid solution phase can be obtained with using liquid nitrogen as a coolant. The compressive strengths of the rapid solidified AZ91 magnesium alloys are higher than those of normal cast alloy, and decrease with increasing cooling rate. After artificial aging treatment for 14 h at 168℃, the compressive strength of the rapidly solidified AZ91 magnesium alloy cooled in liquid nitrogen increases from 253.5 to 335.3 MPa, while the compressive yield strength increases from 138.1 to 225.91 MPa. The improvement in the compressive strength of the rapidly solidified AZ91 magnesium alloys can be attributed to the hardening effect from fine secondary phase.
基金Funded by Natural Science Foundation of Hebei Province(No.501282).
文摘Through the DSC, XRD, SEM and other experimental methods, the microstructure characteristics of reactive powder concrete ( RPC) are discussed. The results show that RPC has a super high performance because of its lower ratio of water-binder, high pack density, optimum hydration products mixture and being strengthened by steel fiber. The high performance results from the special hydration microstructure of RPC, and its super performance can be well explained by the centrum particle hypothesis.
文摘In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.
基金Project(2017YFB0305700)supported by the Ministry of Science and Technology of ChinaProjects(51490660,51490664)supported by the National Natural Science Foundation of ChinaProject(2017YFB0305700)supported by the National Key Research and Development Project of China。
文摘The Pb-free solders have attracted a great deal of attention recently due to the environmental concerns.The present work focuses on the effect of cobalt content(0,0.5 and 3.0)on the microstructural characteristics,melting point and corrosion performance of extruded Sn-9Zn solder alloys.The results reveal that the Zn-rich precipitates with spherical or needle-like shape in the Sn-9Zn-xCo alloys are refined remarkably by forming the γ-Co5Zn21 and Co2Sn2Zn Co-contained intermetallic compounds,though the melting point and eutectic reaction temperature decrease slightly.It is suggested that the corrosion property of the extruded Sn-9Zn-xCo alloys is improved significantly by adding the cobalt element,while the content should be controlled reasonably.Combining the corrosion morphology,the influence of cobalt content on the corrosion behavior of the Sn-9Zn-xCo alloys is analyzed in terms of the refined microstructure and the enhanced passive film stability.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing the effects of cooling modes on the microstructure and electrochemical characteristics of the material. The results indicate that the water quenching mode can control overgrowth of the grain size of final product and improve its electrochemical performance compared with nature cooling mode and air quenching mode. The sample synthesized by using water quenching mode is of the highest reversible discharge specific capacity and the best cyclic electrochemical performance, demonstrating the first discharge capacity of 138.1 mA·h/g at 0.1C rate and the total loss of capacity of 3.11% after 20 cycles.