The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model ...The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.展开更多
Web Service Composition provides an opportunity for enterprises to increase the ability to adapt themselves to frequent changes in users' requirements by integrating existing services. Our research has focused on ...Web Service Composition provides an opportunity for enterprises to increase the ability to adapt themselves to frequent changes in users' requirements by integrating existing services. Our research has focused on proposing a framework to support dynamic composition and to use both SOAP-based and RESTful Web services simultaneously in composite services. In this paper a framework called "Model-driven Dynamic Composition of Heterogeneous Service" (MDCHeS) is introduced. It is elaborated in three different ways;each represents a particular view of the framework: data view, which consists of a Meta model and composition elements as well their relationships;process view, which introduces composition phases and used models in each phase;and component view, which shows an abstract view of the components and their interactions. In order to increase the dynamicity of MDCHeS framework, Model Driven Architecture and proxy based ideas are used.展开更多
Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron...Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM) and UV-vis diffuse reflectance spectroscopy(DRS). When BN: BZN=0.1 mole ratio, the BN/BZN composite showed the best visible-light-driven photocatalytic performance, which decomposed nearly 100% of Rh B(10 ppm, p H=3-4) within 40 min. The results demonstrated that in-situ solid state synthesis of BN/BZN composites could be an efficient strategy to develop new photocatalyst for environmental remediation.展开更多
Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestr...Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestrial medium, bionic propulsion method has great advantages in terms of manoeuvrability, efficiency, and reliability, because there is no need to switch between different propulsion systems. To explore the integrated driving technology of amphibious robot, a novel bio-inspired soft robotic fin for amphibious use is proposed in this paper. The bionic fin can swim underwater and walk on land by the same undulating motion. To balance the conflicting demands of flexibility underwater and rigidity on land, the undulating fin adopts a special combination of a membrane fin and a bending spring. A periodic longitudinal wave in horizontal direction has been found generating passively in dynamic analysis. To find the composite wave-driven mechanics, theoretical analysis is conducted based on the walking model and swimming model. A virtual prototype is built in ADAMS software to verify the walking mechanics. The simulation result reveals that the passive longitudinal wave is also periodical and the composite wave contributes to land walking. Finally, an amphibious robot prototype actuated by a pair of undulating fins has been developed. The experiments show that the robot can achieve multiple locomotion, including walking forward/backward, turning in place, swimming underwater, and crossing medium, thus giving evidence to the feasibility of the newly designed undulating fin for amphibious robot.展开更多
The rapid improvement in the running speed,transmission efficiency,and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electro...The rapid improvement in the running speed,transmission efficiency,and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference(EMI)shielding performance are urgently required.Here,inspired by the fibrous pathways of the human nervous system,a“core–sheath”fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube(TPU/PDA/CNT)composites film with thermal management capability and EMI shielding performance.Firstly,TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers.Subsequently,TPU/PDA/CNT composites with three-dimensional(3D)fibrous CNT“tracks”are obtained by a hot-pressing process,where CNTs distributed on adjacent fibers are compactly contacted.The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity(TC)of 9.6 W/(m·K)at low CNT loading of 7.6 wt.%.In addition,it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities.Hence,this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Heilongjiang Province Science Foundation for Youths(Grant No.QC2015003)the Harbin Science and Technology Bureau Young Talent Reserve Project(Grant No.RC2016QN001011,RC2016QN017023)
文摘The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.
文摘Web Service Composition provides an opportunity for enterprises to increase the ability to adapt themselves to frequent changes in users' requirements by integrating existing services. Our research has focused on proposing a framework to support dynamic composition and to use both SOAP-based and RESTful Web services simultaneously in composite services. In this paper a framework called "Model-driven Dynamic Composition of Heterogeneous Service" (MDCHeS) is introduced. It is elaborated in three different ways;each represents a particular view of the framework: data view, which consists of a Meta model and composition elements as well their relationships;process view, which introduces composition phases and used models in each phase;and component view, which shows an abstract view of the components and their interactions. In order to increase the dynamicity of MDCHeS framework, Model Driven Architecture and proxy based ideas are used.
基金Funded by the National Natural Science Foundation of China(No.51662005)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)
文摘Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM) and UV-vis diffuse reflectance spectroscopy(DRS). When BN: BZN=0.1 mole ratio, the BN/BZN composite showed the best visible-light-driven photocatalytic performance, which decomposed nearly 100% of Rh B(10 ppm, p H=3-4) within 40 min. The results demonstrated that in-situ solid state synthesis of BN/BZN composites could be an efficient strategy to develop new photocatalyst for environmental remediation.
基金supported by the National Natural Science Foundation of China(Grant No.52075537 and Grant No.52105289).
文摘Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestrial medium, bionic propulsion method has great advantages in terms of manoeuvrability, efficiency, and reliability, because there is no need to switch between different propulsion systems. To explore the integrated driving technology of amphibious robot, a novel bio-inspired soft robotic fin for amphibious use is proposed in this paper. The bionic fin can swim underwater and walk on land by the same undulating motion. To balance the conflicting demands of flexibility underwater and rigidity on land, the undulating fin adopts a special combination of a membrane fin and a bending spring. A periodic longitudinal wave in horizontal direction has been found generating passively in dynamic analysis. To find the composite wave-driven mechanics, theoretical analysis is conducted based on the walking model and swimming model. A virtual prototype is built in ADAMS software to verify the walking mechanics. The simulation result reveals that the passive longitudinal wave is also periodical and the composite wave contributes to land walking. Finally, an amphibious robot prototype actuated by a pair of undulating fins has been developed. The experiments show that the robot can achieve multiple locomotion, including walking forward/backward, turning in place, swimming underwater, and crossing medium, thus giving evidence to the feasibility of the newly designed undulating fin for amphibious robot.
基金supported by the National Natural Science Foundation of China(Nos.21704096,51703217,and 12072325)the Natural Science Foundation of Henan Province(No.20A430028).
文摘The rapid improvement in the running speed,transmission efficiency,and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference(EMI)shielding performance are urgently required.Here,inspired by the fibrous pathways of the human nervous system,a“core–sheath”fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube(TPU/PDA/CNT)composites film with thermal management capability and EMI shielding performance.Firstly,TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers.Subsequently,TPU/PDA/CNT composites with three-dimensional(3D)fibrous CNT“tracks”are obtained by a hot-pressing process,where CNTs distributed on adjacent fibers are compactly contacted.The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity(TC)of 9.6 W/(m·K)at low CNT loading of 7.6 wt.%.In addition,it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities.Hence,this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices.