期刊文献+
共找到13,389篇文章
< 1 2 250 >
每页显示 20 50 100
Contribution to the Full 3D Finite Element Modelling of a Hybrid Stepping Motor with and without Current in the Coils
1
作者 Belemdara Dingamadji Hilaire Mbaïnaïbeye Jérôme Guidkaya Golam 《Journal of Electromagnetic Analysis and Applications》 2024年第2期11-23,共13页
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw... The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet. 展开更多
关键词 modelLING 3D finite elements Magnetic Flux Hybrid Stepping Motor
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:1
2
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model finite element simulation
下载PDF
Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model 被引量:1
3
作者 Yinlong Wang Zhao Li +1 位作者 Ziran Li Yang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1187-1208,共22页
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga... The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects. 展开更多
关键词 Uncured rubber constitutive modeling radial tire building process finite element method
下载PDF
An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection 被引量:1
4
作者 Xiao-Lei Chu Xi-Zi Song +5 位作者 Yu-Ru Li Zi-Ren Wu Qi Li Qing-Wen Li Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期683-688,共6页
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ... Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection. 展开更多
关键词 finite element modeling median nerve transection nerve regeneration NEUROREHABILITATION percutaneous electrical nerve stimulation peripheral nerve injury randomized controlled trial
下载PDF
Finite Element Implementation of the Exponential Drucker-Prager Plasticity Model for Adhesive Joints
5
作者 Kerati Suwanpakpraek Baramee Patamaprohm +1 位作者 Sacharuck Pornpeerakeat Arisara Chaikittiratana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1765-1778,共14页
This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influen... This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer.The developed user subroutine UMAT,which utilizes an associated plastic flow during a plastic deformation,can provide a good agreement between the simulations and the experimental data.Better numerical stability at highly positive hydrostatic pressure loads for a very high order of exponential function can also be achieved compared to when a non-associated flow is used. 展开更多
关键词 Exponential Drucker-Prager model modified-Arcan test finite element analysis plastic potential function
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
6
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Behaviour of non-ballast pre-stressed and precast track structures in high speed railway based on multiscale finite element model
7
作者 Yuhang Wang Jjun Wang +2 位作者 Qi Tang Jike Tan Guobing Lu 《High-Speed Railway》 2023年第1期70-85,共16页
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio... In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized. 展开更多
关键词 High speed railway Non-ballast track Multiscale finite element model
下载PDF
Computer model of the human head-neck and finite element analysis 被引量:3
8
作者 薛强 卢晓艳 《微计算机信息》 北大核心 2008年第6期262-264,共3页
The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically... The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically modeling of Mimics software and the RE technology of Geomagic software. Then the finite element model of the head-neck which is close to the real one is set up by the preprocessor of the FEM soft ware ANSYS. After the transient finite element analysis is performed on the model,the historical response of the displacement of the head is obtained. The result is validated by the result of the existed experiment. The stress,as well as the deformation,of nodes in the head and the cervical spine at any time benefits a lot to the clinic study on the injure to the head and neck caused by the impacts. And all the analysis is done by limited computer available. 展开更多
关键词 头颈椎 计算机模型 生物力学 有限元分析
下载PDF
Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method
9
作者 LEI Qing-long ZHU Xiao-hua 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期190-203,共14页
As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is on... As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is one of the failure modes of flexible pipes during transportation and laying. In this paper, a theoretical model(TM) of a flexible pipe section mechanics is established, in which the carcass layer and the pressure armor layer are equivalent to the orthogonal anisotropic layers due to its complex cross-section structure. The calculation results of the TM are consistent with those of a finite element model(FEM), which can accurately describe the torsional response of the flexible pipe.Subsequently, the TM and FEM are used to discuss the influence of boundary conditions on the torsional response.The structure of the flexible pipe is stable when twisted counterclockwise. However, limiting the top axial displacement can improve the axial and radial instability of the tensile armor layer when twisted clockwise. Finally, it is recommended that the flexible pipe can be kept under top fixation during service or installation to avoid torsional failure. 展开更多
关键词 flexible pipe torsional response analytical model finite element model
下载PDF
Proper orthogonal decomposition based seismic source wavefield reconstruction for finite element reverse time migration
10
作者 Wen-Zhuo Tan Bang-Yu Wu +1 位作者 Rui Li Bo Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期199-211,共13页
The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b... The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging. 展开更多
关键词 Reverse time migration Seismic wavefield reconstruction finite element modeling Proper orthogonal decomposition
下载PDF
IN-PLANE WAVE MOTION IN FINITE ELEMENT MODEL 被引量:3
11
作者 刘晶波 廖振鹏 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第1期80-87,共8页
The analysis method of lattice dynamics in classical physics is extended to study the propertiesof in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of Pand SV waves ... The analysis method of lattice dynamics in classical physics is extended to study the propertiesof in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of Pand SV waves in the discrete model are first obtained by means of separating the characteristic equation of themotion equation, and then used to analyse the properties of P-and SV-homogeneous, inhomogeneous wavesand other types of motion in the model. The dispersion characters, cut-off frequencies of P and SV waves,the polarization drift and appendent anisotropic property of wave motion caused by the discretization are finallydiscussed. 展开更多
关键词 finite element DISCRETE model IN-PLANE WAVE motion LATTICE dynamics
下载PDF
Experimental and finite element analysis of tibial stress fractures using a rabbit model 被引量:3
12
作者 Melanie Franklyn Bruce Field 《World Journal of Orthopedics》 2013年第4期267-278,共12页
AIM: To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture(TSF) development.METHODS: Fresh rabbit tibiae were loaded under compression using a specifically-d... AIM: To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture(TSF) development.METHODS: Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element(FE) model was developed using cross-sectional computer tomography(CT) images scanned from one of the rabbit bones, and a static load of 6 kg(1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation.RESULTS: The experimental tests showed that un der a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis Up to 30 kg, the bone does not fail by elastic buckling however, there are low levels of tensile stress which predominately occur at and adjacent to the anterio border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cycli loading initially fails in tension. The FE model predic tions were consistent with both mechanics theory and the strain gauge results. The model was highly sensi tive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit s tibia. The modelling technique used in the curren study could have applications in the development o human FE models of bone, where, unlike rabbit tibia the model would be relatively insensitive to very sma changes in load position. However, the rabbit mode itself is less beneficial as a tool to understand the me chanical behaviour of TSFs in humans due to the sma size of the rabbit bone and the limitations of human scale CT scanning equipment.CONCLUSION: The current modelling technique could be used to develop human FE models. However, the rabbit model itself has significant limitations in under standing human TSF mechanics. 展开更多
关键词 RABBIT Stress fracture TIBIA finite element analysis finite element model MECHANICS
下载PDF
3-D finite element modeling for evolution of stress field and interaction among strong earthquakes in Sichuan-Yunnan region 被引量:3
13
作者 CHEN Hua-ran(陈化然) +11 位作者 CHEN Lian-wang(陈连旺) MA Hong-sheng(马宏生) LI Yi-qun(李轶群) ZHANG Jie-qing(张杰卿) HE Qiao-yun(何巧云) WANG Jian-guo(王建国) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期625-634,共10页
Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep... Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction. 展开更多
关键词 3-D finite element model background STRESS FIELD STRESS FIELD caused by FAULT CREEP STRESS FIELD triggered by strong earthquake
下载PDF
Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT 被引量:3
14
作者 张海军 周储伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期639-645,共7页
The precise microscopic feature of carbon-carbon(C/C)composites is essential for an accurate prediction of their mechanical behavior.After fabrication,actual microscopic feature differs from simple ideal spatial model... The precise microscopic feature of carbon-carbon(C/C)composites is essential for an accurate prediction of their mechanical behavior.After fabrication,actual microscopic feature differs from simple ideal spatial model.Micro-computed-tomography(CT)scan can well describe internal microstructures of composites.Therefore,a reconstructed model is developed based on mirco-CT,by a series of prodcedures including extracting components,generating new binary images and establishing a finite element(FE)model.Compared with the model designed by reconstructed commercial software MIMICS,the presented reconstructed FE model is superior in terms of high mesh quality and controllable mesh quantity.The precision of the model is verified by experiment. 展开更多
关键词 C/C composites mirco-CT binary image reconstructed procedure finite element model
下载PDF
Finite element modeling of the viscoelastic responses of the eye during microvolumetric changes 被引量:5
15
作者 Benjamin Cruz Perez Hugh J. Morris +1 位作者 Richard T. Hart Jun Liu 《Journal of Biomedical Science and Engineering》 2013年第12期29-37,共9页
A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelast... A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelastic properties of the cornea and the sclera, including the instantaneous modulus, equilibrium modulus, and relaxation time constants, parametrically varied to examine their effects on IOP elevations at different rates of volumetric changes. The simulated responses were in good agreement with the previously reported experimental results obtained from porcine globes, showing the general trend of higher IOP elevations at faster rates. The simulations showed that all viscoelastic properties influenced the profile of the dynamic IOP due to volumetric changes, and the relative significance of a specific parameter was highly dependent on the rate of change. 展开更多
关键词 VISCOELASTICITY finite element modeling INTRAOCULAR Pressure CORNEA SCLERA
下载PDF
Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction 被引量:4
16
作者 Libardo V.Vanegas-Useche Magd M.Abdel-Wahab Graham A.Parker 《Computers, Materials & Continua》 SCIE EI 2018年第7期169-184,共16页
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS... In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant. 展开更多
关键词 BRUSH street sweeping finite element modeling contact mechanics
下载PDF
Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction 被引量:2
17
作者 Djillali Amar Bouzid Subhamoy Bhattacharya Lalahoum Otsmane 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期333-346,共14页
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using... A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness K_L, rotational stiffness K_R and cross-coupling stiffness K_(LR) of which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of K_L, K_R and K_(LR) were obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. 展开更多
关键词 Nonlinear finite element analysis VERTICAL slices model Monopiles under HORIZONTAL loading Natural frequency MONOPILE head STIFFNESS OFFSHORE WIND turbines(OWTs)
下载PDF
Multi-scale Simulation Method with Coupled Finite/Discrete Element Model and Its Application 被引量:1
18
作者 FANG Xiwu LIU Zhenyu +2 位作者 TAN Jianrong QIU Chan CHEN Fengbei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期659-667,共9页
The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction betwe... The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head. 展开更多
关键词 MULTI-SCALE finite element DISCRETE element linear ELASTIC model
下载PDF
A 3D finite element modeling on the relationship between crustal stress and earthquake activity in Liaoning and its vicinity 被引量:1
19
作者 李平 卢良玉 +3 位作者 卢造勋 潘科 焦明若 许忠淮 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第1期25-37,117,共14页
Based on the latest result in research on 3D seismic wave velocity structure of crust and uppermost mantle and taking geological setting and fracture zones into consideration, a 3D geological model for the studied reg... Based on the latest result in research on 3D seismic wave velocity structure of crust and uppermost mantle and taking geological setting and fracture zones into consideration, a 3D geological model for the studied region is built up. The boundary constraint and force loading boundary condition for the model are determined according to the characteristics of crustal stress field deduced from earthquake focal mechanism and in-situ stress measurement data. Using linear elastic material model a 3D finite element modeling is conducted to study the characteristics of crustal stress field. A comparison analysis between the simulated stress field and earthquake locations reveals that the moderate and strong earthquakes generally occurred in the zones with high shear stress gradient. Furthermore, the paper notices a few potential earthquake-prone regions. 展开更多
关键词 LIAONING and ITS VICINITY TECTONIC stress field finite element modelING
下载PDF
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES 被引量:29
20
作者 A.P.Bunger Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期443-452,共10页
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs.The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the effcient applicatio... Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs.The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the effcient application of this technology,but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation.By taking advantage of a cohesive zone method to simulate the fracture process,a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium.The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated.Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case. 展开更多
关键词 有限元素 有限元模型 水力压裂 建模 骨折 水利 数值模拟 断裂扩展
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部