期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
LOCALLY STABILIZED FINITE ELEMENT METHOD FOR STOKES PROBLEM WITH NONLINEAR SLIP BOUNDARY CONDITIONS 被引量:1
1
作者 Yuan Li Kai-tai Li 《Journal of Computational Mathematics》 SCIE CSCD 2010年第6期826-836,共11页
Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonl... Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions. 展开更多
关键词 Stokes Problem Nonlinear Slip Boundary Variational Inequality Local stabilized Finite Element Method error estimate.
原文传递
四阶线性方程极弱局部间断Galerkin法傅里叶分析
2
作者 王如意 毕卉 刘威 《黑龙江大学自然科学学报》 CAS 2024年第2期150-156,共7页
主要研究了四阶线性方程极弱局部间断Galerkin方法的傅里叶误差分析问题。首先,给出四阶线性方程的极弱局部间断Galerkin空间离散格式,并在周期边界条件及一致网格的条件下将离散格式表示为差分形式,然后,在k=2的情况下,利用傅里叶分析... 主要研究了四阶线性方程极弱局部间断Galerkin方法的傅里叶误差分析问题。首先,给出四阶线性方程的极弱局部间断Galerkin空间离散格式,并在周期边界条件及一致网格的条件下将离散格式表示为差分形式,然后,在k=2的情况下,利用傅里叶分析方法分析其稳定性及其误差估计问题,最后,利用数值实验,分别对得到的结果进行验证。 展开更多
关键词 四阶线性方程 极弱局部间断Galerkin 傅里叶分析 稳定性分析 误差估计
下载PDF
一种推广的对流扩散方程的局部化间断Galerkin方法 被引量:1
3
作者 汪继文 《高校应用数学学报(A辑)》 CSCD 北大核心 2003年第1期33-38,共6页
研究求解一种产生于径向渗流问题的推广的对流扩散方程的局部化间断Galerkin方法,对一般非线性情形证明了方法的L2稳定性;对线性情形证明了,当方法取有限元空间为k次多项式空间时,数值解逼近的L∞(0,T;L2)模的误差阶为k.
关键词 推广的对流扩散方程 局部化间断Galerkin方法 稳定性 误差估计
下载PDF
Stokes方程的压力梯度局部投影稳定化方法 被引量:3
4
作者 孔花 刘程熙 曹艳萍 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期989-994,共6页
作者将压力梯度投影方法和宏元剖分相结合,对Stokes方程提出了一种新的局部稳定化方法,该方法的稳定项只与压力梯度投影和宏元内部边界跳跃有关,而且不需要修改右端,实现起来更容易.
关键词 宏元 局部稳定化 误差估计
原文传递
HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION 被引量:3
5
作者 Ruihan Guo Liangyue Ji Yan Xu 《Journal of Computational Mathematics》 SCIE CSCD 2016年第2期135-158,共24页
In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th... In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique. 展开更多
关键词 Local discontinuous Galerkin method Allen-Cahn equation Energy stability Convex splitting Spectral deferred correction A priori error estimate Negative norm errorestimate.
原文传递
对流扩散反应方程的局部投影稳定化连续时空有限元方法 被引量:4
6
作者 董自明 李宏 +1 位作者 智慧 唐斯琴 《计算数学》 CSCD 北大核心 2021年第3期367-387,共21页
本文将局部投影稳定化(LPS)方法和连续时空有限元方法相结合研究对流扩散反应方程,给出稳定化连续时空有限元离散格式.与传统的时空有限元研究思路不同,时间方向利用Lagrange插值多项式.解耦时间和空间变量,降低时空有限元解的维数,具... 本文将局部投影稳定化(LPS)方法和连续时空有限元方法相结合研究对流扩散反应方程,给出稳定化连续时空有限元离散格式.与传统的时空有限元研究思路不同,时间方向利用Lagrange插值多项式.解耦时间和空间变量,降低时空有限元解的维数,具有减少计算量和简化理论分析的优点.通过引入Legendre多项式给出了有限元解的稳定性分析,进一步引进Lobatto多项式证明了有限元解的全局L^(∞)(L^(2))利局部L^(2)(J_(n);LPS)范数误差估计.最后给出数值算例验证理论分析的正确性,以及稳定化格式的可行性和有效性. 展开更多
关键词 对流扩散反应方程 LPS方法 连续时空有限元方法 误差估计
原文传递
Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations 被引量:11
7
作者 Yan Xu Chi-Wang Shu 《Communications in Computational Physics》 SCIE 2010年第1期1-46,共46页
Discontinuous Galerkin (DG) methods are a class of finite element methodsusing discontinuous basis functions, which are usually chosen as piecewise polynomi-als. Since the basis functions can be discontinuous, these m... Discontinuous Galerkin (DG) methods are a class of finite element methodsusing discontinuous basis functions, which are usually chosen as piecewise polynomi-als. Since the basis functions can be discontinuous, these methods have the flexibilitywhich is not shared by typical finite element methods, such as the allowance of ar-bitrary triangulation with hanging nodes, less restriction in changing the polynomialdegrees in each element independent of that in the neighbors (p adaptivity), and localdata structure and the resulting high parallel efficiency. In this paper, we give a generalreview of the local DG (LDG) methods for solving high-order time-dependent partialdifferential equations (PDEs). The important ingredient of the design of LDG schemes,namely the adequate choice of numerical fluxes, is highlighted. Some of the applica-tions of the LDG methods for high-order time-dependent PDEs are also be discussed. 展开更多
关键词 Discontinuous Galerkin method local discontinuous Galerkin method numerical flux STABILITY time discretization high order accuracy STABILITY error estimates
原文传递
Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems 被引量:2
8
作者 Haijin Wang Qiang Zhang +1 位作者 Shiping Wang Chi-Wang Shu 《Science China Mathematics》 SCIE CSCD 2020年第1期183-204,共22页
In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic id... In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations. 展开更多
关键词 local discontinuous Galerkin explicit-implicit-null time discretization nonlinear diffusion stability error estimates
原文传递
An LDG Method for Stochastic Cahn-Hilliard Type Equation Driven by General Multiplicative Noise Involving Second-Order Derivative
9
作者 Li Zhou Yunzhang Li 《Communications in Computational Physics》 SCIE 2022年第2期516-547,共32页
In this paper,we propose a local discontinuous Galerkin(LDG)method for themulti-dimensional stochastic Cahn-Hilliard type equation in a general form,which involves second-order derivative Du in the multiplicative nois... In this paper,we propose a local discontinuous Galerkin(LDG)method for themulti-dimensional stochastic Cahn-Hilliard type equation in a general form,which involves second-order derivative Du in the multiplicative noise.The stability of our scheme is proved for arbitrary polygonal domain with triangular meshes.We get the sub-optimal error estimate O(h^(k))if the Cartesian meshes with Q^(k) elements are used.Numerical examples are given to display the performance of the LDG method. 展开更多
关键词 Local discontinuous Galerkin method stochastic Cahn-Hilliard type equations multiplicative noise stability analysis error estimates
原文传递
Improved Local Projection for the Generalized Stokes Problem
10
作者 Kamel Nafa 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第6期862-873,共12页
We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties.An important feature of the methods is that the press... We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties.An important feature of the methods is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations.Although the stability of the method has been established,for the homogeneous Stokes equations,the proof given here is based on the existence of a special interpolant with additional orthogonal property with respect to the projection space.This makes it much simpler and more attractive.The resulting stabilized method is shown to lead to optimal rates of convergence for both velocity and pressure approximations. 展开更多
关键词 Generalized Stokes equations stabilized finite elements local projection CONVERGENCE error estimates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部