期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy 被引量:1
1
作者 Wenshen Wang Fenfen Li +8 位作者 Shibo Li Yi Hu Mengran Xu Yuanyuan Zhang Muhammad Imran Khan Shaozhen Wang Min Wu Weiping Ding Bensheng Qiu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期77-87,共11页
Tumor-associated macrophages(TAMs)play an important role in tumor development and progression.In particular,M2 TAMs can promote tumor growth by facilitating tumor progression and malignant behaviors.Selectively target... Tumor-associated macrophages(TAMs)play an important role in tumor development and progression.In particular,M2 TAMs can promote tumor growth by facilitating tumor progression and malignant behaviors.Selectively targeted elimination of M2 TAMs to inhibit tumor progression is of great significance for cancer treatment.Iron oxide nanoparticles based magnetic hyperthermia therapy(MHT)is a classical approach to destroy tumor tissue with deep penetration depth.In this study,we developed a typical M2 macrophage-targeted peptide(M2pep)functionalized superparamagnetic iron oxide nanoparticle(SPIO)for magnetic resonance imaging(MRI)-guided MHT in an orthotopic breast cancer mouse model.The obtained multifunctional SPIO-M2pep with a hydrodynamic diameter of 20 nm showed efficient targeting capability,high transverse relaxivity(149 mM^(-1) s^(-1))and satisfactory magnetic hyperthermia performance in vitro.In vivo studies demonstrated that the SPIO-M2pep based MRI can monitor the distribution of nanoparticles in tumor and indicate the suitable timing for MHT.The M2 macrophage-targeted MHT significantly reduced the tumor volume and the population of pro-tumoral M2 TAMs in tumor.In addition,the SPIO-M2pep based MHT can remodel the tumor immune microenvironment(TIME).The multifunctional SPIO-M2pep with M2 macrophage-targeting ability,high magnetic hyperthermia efficiency,MR imaging capability and effective role in remodeling the TIME hold great potential to improve clinical cancer therapy outcomes. 展开更多
关键词 M2 macrophages-targeted peptide Iron oxide nanoparticles Magnetic resonance imaging Magnetic hyperthermia therapy Tumor immune microenvironment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部