期刊文献+
共找到1,420篇文章
< 1 2 71 >
每页显示 20 50 100
Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs 被引量:2
1
作者 Qianting Luo Xingyang Li +9 位作者 Wenchao Zhong Wei Cao Mingjing Zhu Antong Wu Wanyi Chen Zhitong Ye Qiao Han Duraipandy Natarajan Janak L.Pathak Qingbin Zhang 《Regenerative Biomaterials》 SCIE EI 2022年第1期93-106,共14页
Dicalcium silicate(Ca_(2)SiO_(4),C_(2)S)has osteogenic potential but induces macrophagic inflammation.Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation.The mitochondrial... Dicalcium silicate(Ca_(2)SiO_(4),C_(2)S)has osteogenic potential but induces macrophagic inflammation.Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation.The mitochondrial function of C_(2)S-treated macrophages is still unclear.This study hypothesized:(i)the C_(2)S modulates mitochondrial function and autophagy in macrophages to regulate macro-phagic inflammation,and(ii)C_(2)S-induced macrophagic inflammation regulates osteogenesis.We used RAW264.7 cells as a model of macrophage.The C_(2)S(75–150μg/ml)extract was used to analyze the macrophagic mitochondrial function and macrophagemediated effect on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells(BMSCs).The results showed that C_(2)S extract(150μg/ml)induced TNF-α,IL-1βand IL-6 production in macrophages.C_(2)S extract(150μg/ml)enhanced reactive oxygen species level and intracellular calcium level but reduced mitochondrial membrane potential and ATP production.TEM images showed reduced mitochondrial abundance and altered the mitochondrial morphology in C_(2)S(150μg/ml)-treated macrophages.Protein level expression of PINK1,Parkin,Beclin1 and LC3 was upregulated but TOMM20 was downregulated.mRNA sequencing and KEGG analysis showed that C_(2)S-induced differentially expressed mRNAs in macrophages were mainly distributed in the essential signaling pathways involved in mitochondrial function and autophagy.The conditioned medium from C_(2)S-treated macrophage robustly promoted osteogenic differentiation in BMSCs.In conclusion,our results indicate mitochondrial dysfunction and autophagy as the possible mechanism of C_(2)S-induced macrophagic inflammation.The promotion of osteogenic differentiation of BMSCs by the C_(2)S-induced macrophagic inflammation suggests the potential application of C_(2)S in developing immunomodulatory bone grafts. 展开更多
关键词 dicalcium silicate macrophagic inflammation mitochondrial function AUTOPHAGY OSTEOGENESIS
原文传递
Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies
2
作者 Guangyong Zhang Qing Yao +9 位作者 Chubing Long Pengcheng Yi Jiali Song Luojia Wu Wei Wan Xiuqin Rao Yue Lin Gen Wei Jun Ying Fuzhou Hua 《Neural Regeneration Research》 SCIE CAS 2025年第3期779-793,共15页
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple rol... Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases. 展开更多
关键词 blood–brain barrier MACROPHAGES MONOCYTES multiple sclerosis NEUROINFLAMMATION review therapy
下载PDF
Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss
3
作者 Jia Fang Zhuangzhuang Li +8 位作者 Pengjun Wang Xiaoxu Zhang Song Mao Yini Li Dongzhen Yu Xiaoyan Li Yazhi Xing Haibo Shi Shankai Yin 《Neural Regeneration Research》 SCIE CAS 2025年第10期3025-3039,共15页
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ... Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration. 展开更多
关键词 DEGENERATION hearing loss macrophages Mcc950 neuroinflammation NLRP3 inflammasome OTOTOXICITY pyroptosis sensorineural hearing loss spiral ganglion neuron
下载PDF
Microglia:a promising therapeutic target in spinal cord injury
4
作者 Xiaowei Zha Guoli Zheng +3 位作者 Thomas Skutella Karl Kiening Andreas Unterberg Alexander Younsi 《Neural Regeneration Research》 SCIE CAS 2025年第2期454-463,共10页
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou... Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target. 展开更多
关键词 ASTROCYTES CYTOKINES functional recovery immune regulation M1/M2 activation MACROPHAGES MICROGLIA NEUROINFLAMMATION spinal cord injury therapy
下载PDF
Polyethylene glycol has immunoprotective effects on sciatic allografts, but behavioral recovery and graft tolerance require neurorrhaphy and axonal fusion
5
作者 Tyler A.Smith Liwen Zhou +6 位作者 Cameron L.Ghergherehchi Michelle Mikesh Cathy Z.Yang Haley O.Tucker JuliAnne Allgood Jared S.Bushman George D.Bittner 《Neural Regeneration Research》 SCIE CAS 2025年第4期1192-1206,共15页
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher... Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries. 展开更多
关键词 allograft rejection AXOTOMY macrophage MYELIN nerve repair polyethylene glycol(PEG) sciatic nerve T cell transplantation Wallerian degeneration
下载PDF
C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury
6
作者 Xiangzi Wang Xiaofei Niu +4 位作者 Yingkai Wang Yang Liu Cheng Yang Xuyi Chen Zhongquan Qi 《Neural Regeneration Research》 SCIE CAS 2025年第8期2231-2244,共14页
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand... Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury. 展开更多
关键词 apoptosis C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway C-C motif chemokine receptor 2 antagonists chemokine ligand 2 chemokine receptor 2 inflammation macrophage microglia spinal cord injury therapeutic method
下载PDF
Targeting macrophagic SHP2 for ameliorating osteoarthritis via TLR signaling 被引量:4
7
作者 Ziying Sun Qianqian Liu +15 位作者 Zhongyang Lv Jiawei Li Xingquan Xu Heng Sun Maochun Wang Kuoyang Sun Tianshu Shi Zizheng Liu Guihua Tan Wenqiang Yan Rui Wu Yannick Xiaofan Yang Shiro Ikegawa Qing Jiang Yang Sun Dongquan Shi 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第7期3073-3084,共12页
Osteoarthritis(OA),in which M1 macrophage polarization in the synovium exacerbates disease progression,is a major cause of cartilage degeneration and functional disabilities.Therapeutic strategies of OA designed to in... Osteoarthritis(OA),in which M1 macrophage polarization in the synovium exacerbates disease progression,is a major cause of cartilage degeneration and functional disabilities.Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported.Here,we report that SHP099,as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2(SHP2),attenuated osteoarthritis progression by inhibiting M1 macrophage polarization.We demonstrated that M1 macrophage polarization was accompanied by the overexpression of SHP2 in the synovial tissues of OA patients and OA model mice.Compared to wild-type(WT)mice,myeloid lineage conditional Shp2 knockout(c KO)mice showed decreased M1 macrophage polarization and attenuated severity of synovitis,an elevated expression of cartilage phenotype protein collagen II(COL2),and a decreased expression of cartilage degradation markers collagen X(COL10)and matrix metalloproteinase3(MMP3)in OA cartilage.Further mechanistic analysis showed that SHP099 inhibited lipopolysaccharide(LPS)-induced Toll-like receptor(TLR)signaling mediated by nuclear factor kappa B(NF-κB)and PI3K—AKT signaling.Moreover,intra-articular injection of SHP099 also significantly attenuated OA progression,including joint synovitis and cartilage damage.These results indicated that allosteric inhibition of SHP2 might be a promising therapeutic strategy for the treatment of OA. 展开更多
关键词 SHP2 SHP099 OSTEOARTHRITIS SYNOVITIS Toll-like receptor signaling MACROPHAGE Cartilage degradation M1 macrophage polarization
原文传递
Targeting macrophagic 17β-HSD7 by fenretinide for the treatment of nonalcoholic fatty liver disease
8
作者 Xiaoyu Dong Yiting Feng +7 位作者 Dongqin Xu Mengya Zhang Xiao Wen Wenhao Zhao Qintong Hu Qinyong Zhang Hui Fu Jie Ping 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第1期142-156,共15页
Nonalcoholic fatty liver disease(NAFLD)is the most common chronic liver disease worldwide and macrophage polarization plays an important role in its pathogenesis.However,which molecule regulates macrophage polarizatio... Nonalcoholic fatty liver disease(NAFLD)is the most common chronic liver disease worldwide and macrophage polarization plays an important role in its pathogenesis.However,which molecule regulates macrophage polarization in NAFLD remains unclear.Herein,we showed NAFLD mice exhibited increased 17β-hydroxysteroid dehydrogenase type 7(17β-HSD7)expression in hepatic macrophages concomitantly with elevated M1 polarization.Single-cell RNA sequencing on hepatic non-parenchymal cells isolated from wild-type littermates and macrophage-17β-HSD7 knockout mice fed with high fat diet(HFD)for 6 weeks revealed that lipid metabolism pathways were notably changed.Furthermore,17β-HSD7 deficiency in macrophages attenuated HFD-induced hepatic steatosis,insulin resistance and liver injury.Mechanistically,17β-HSD7 triggered NLRP3 inflammasome activation by increasing free cholesterol content,thereby promoting M1 polarization of macrophages and the secretion of pro-inflammatory cytokines.In addition,to help demonstrate that 17β-HSD7 is a potential drug target for NAFLD,fenretinide was screened out from an FDA-approved drug library based on its 17β-HSD7 dehydrogenase inhibitory activity.Fenretinide dose-dependently abrogated macrophage polarization and pro-inflammatory cytokines production,and subsequently inhibited fat deposition in hepatocytes co-cultured with macrophages.In conclusion,our findings suggest that blockade of 17β-HSD7 signaling by fenretinide would be a drug repurposing strategy for NAFLD treatment. 展开更多
关键词 Nonalcoholic fatty liver disease 17β-HSD7 MACROPHAGE CHOLESTEROL Insulin resistance FENRETINIDE
原文传递
Gut microbial regulation of innate and adaptive immunity after traumatic brain injury 被引量:6
9
作者 Marta Celorrio Kirill Shumilov Stuart H.Friess 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期272-276,共5页
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative... Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury. 展开更多
关键词 gut microbiome gut microbiota gut-brain axis macrophage MICROGLIA MONOCYTE NEUROINFLAMMATION short-chain fatty acids T cell traumatic brain injury
下载PDF
Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer 被引量:11
10
作者 Zhen Huang Fan-Ying Meng +12 位作者 Lin-Zhu Lu Qian-Qian Guo Chang-Jun Lv Nian-Hua Tan Zhe Deng Jun-Yi Chen Zi-Shu Zhang Bo Zou Hong-Ping Long Qing Zhou Sha Tian Si Mei Xue-Fei Tian 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3511-3533,共23页
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which... BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth. 展开更多
关键词 Calculus bovis M2 tumor-associated macrophage polarization Liver cancer Wnt/β-catenin pathway Tumor microenvironment
下载PDF
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury 被引量:3
11
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve Wallerian degeneration
下载PDF
Myricetin induces M2 macrophage polarization to alleviate renal tubulointerstitial fibrosis in diabetic nephropathy via PI3K/Akt pathway 被引量:3
12
作者 Wei-Long Xu Pei-Pei Zhou +6 位作者 Xu Yu Ting Tian Jin-Jing Bao Chang-Rong Ni Min Zha Xiao Wu Jiang-Yi Yu 《World Journal of Diabetes》 SCIE 2024年第1期105-125,共21页
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations... BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway. 展开更多
关键词 MYRICETIN Diabetic nephropathy PI3K/Akt pathway Renal tubulointerstitial fibrosis MACROPHAGE POLARIZATION
下载PDF
Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis 被引量:1
13
作者 Chunyun Liu Shangde Guo +5 位作者 Rong Liu Minfang Guo Qing Wang Zhi Chai Baoguo Xiao Cungen Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期671-679,共9页
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pat... Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis. 展开更多
关键词 ANTI-INFLAMMATORY experimental autoimmune encephalomyelitis FASUDIL macrophage multiple sclerosis PRO-INFLAMMATORY Rho kinase
下载PDF
Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination 被引量:1
14
作者 Rong Hu Xinpeng Dun +1 位作者 Lolita Singh Matthew C.Banton 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1575-1583,共9页
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical... Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury. 展开更多
关键词 macrophage clearance MIGRATION peripheral nerve injury regeneration re-myelination RUNX2 Schwann cells
下载PDF
The secondary injury cascade after spinal cord injury:an analysis of local cytokine/chemokine regulation 被引量:1
15
作者 Daniel J.Hellenbrand Charles M.Quinn +8 位作者 Zachariah J.Piper Ryan T.Elder Raveena R.Mishra Taylor L.Marti Phoebe M.Omuro Rylie M.Roddick Jae Sung Lee William L.Murphy Amgad S.Hanna 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1308-1317,共10页
After spinal cord injury,there is an extensive infiltration of immune cells,which exacerbates the injury and leads to further neural degeneration.Therefore,a major aim of current research involves targeting the immune... After spinal cord injury,there is an extensive infiltration of immune cells,which exacerbates the injury and leads to further neural degeneration.Therefore,a major aim of current research involves targeting the immune response as a treatment for spinal cord injury.Although much research has been performed analyzing the complex inflammatory process following spinal cord injury,there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation.The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury,identify sexual dimorphisms in terms of cytokine levels,and determine local cytokines that significantly change based on the severity of spinal cord injury.Rats were inflicted with either a mild contusion,moderate contusion,severe contusion,or complete transection,7 mm of spinal cord centered on the injury was harvested at varying times post-injury,and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay.Results demonstrated pro-inflammatory cytokines including tumor necrosis factorα,interleukin-1β,and interleukin-6 were all upregulated after spinal cord injury,but returned to uninjured levels within approximately 24 hours post-injury,while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury.In contrast,several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury.After spinal cord injury,tissue inhibitor of metalloproteinase-1,which specifically affects astrocytes involved in glial scar development,increased more than all other cytokines tested,reaching 26.9-fold higher than uninjured rats.After a mild injury,11 cytokines demonstrated sexual dimorphisms;however,after a severe contusion only leptin levels were different between female and male rats.In conclusion,pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury,chemokines continue to recruit immune cells for days post-injury,while anti-inflammatory cytokines are downregulated by a week post-injury,and sexual dimorphisms observed after mild injury subsided with more severe injuries.Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury,which are essential for researchers developing treatments targeting secondary damage after spinal cord injury. 展开更多
关键词 ASTROCYTES CHEMOKINES cytokines inflammation macrophages MICROGLIA secondary damage spinal cord injury
下载PDF
Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype 被引量:1
16
作者 Yuanyuan Ding Yu Sun +5 位作者 Hongyan Wang Hongqin Zhao Ruihua Yin Meng Zhang Xudong Pan Xiaoyan Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2488-2498,共11页
Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classica... Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke. 展开更多
关键词 ATHEROSCLEROSIS inflammation lnc_000048 lncRNA MACROPHAGE POLARIZATION protein kinase RNA-activated(PKR) STAT1
下载PDF
Global trends in publications regarding macrophages-related diabetic foot ulcers in the last two decades 被引量:1
17
作者 Jian-Ping Wen Shuan-Ji Ou +7 位作者 Jia-Bao Liu Wei Zhang Yu-Dun Qu Jia-Xuan Li Chang-Liang Xia Yang Yang Yong Qi Chang-Peng Xu 《World Journal of Diabetes》 SCIE 2024年第7期1627-1644,共18页
BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial... BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research. 展开更多
关键词 Diabetic foot ulcers MACROPHAGE Macrophage polarization BIBLIOMETRICS Wound healing Inflammation
下载PDF
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage 被引量:1
18
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/AKT/mTOR signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
Upregulation of circ0000381 atienuates microglial/macrophage pyroptosis after spinal cord injury 被引量:1
19
作者 Yan Zhang Wenkai Zhang +4 位作者 Tao Liu Ziqian Ma Wenxiu Zhang Yun Guan Xueming Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1360-1366,共7页
Neuroinflammation exacerbates secondary damage after spinal cord injury,while microglia/macrophage pyroptosis is important to neuroinflammation.Circular RNAs(circRNAs)play a role in the central nervous system.However,... Neuroinflammation exacerbates secondary damage after spinal cord injury,while microglia/macrophage pyroptosis is important to neuroinflammation.Circular RNAs(circRNAs)play a role in the central nervous system.However,the functional role and mechanism of circRNAs in regulating microglia/macrophage pyroptosis after spinal cord injury are still poorly studied.In the present study,we detected microglia/macrophage pyroptosis in a female rat model of spinal cord injury,along with upregulated levels of circ0000381 in the spinal cord.Our further experimental results suggest that circ0000381 may function as a sponge to sequester endogenous microRNA423-3p(miR-423-3p),which can increase the expression of NOD-like receptor 3(NLRP3),a pyroptosis marker.Therefore,upregulation of circ0000381 may be a compensatory change after spinal cord injury to attenuate microglia/macrophage pyroptosis.Indeed,knockdown of circ0000381 expression exacerbated microglia/macrophage pyroptosis.Collectively,our findings provide novel evidence for the upregulation of circ0000381,which may serve as a neuroprotective mechanism to attenuate microglia/macrophage pyroptosis after spinal cord injury.Accordingly,circ0000381 may be a novel therapeutic target for the treatment of spinal cord injury. 展开更多
关键词 circ0000381 INFLAMMASOME MACROPHAGE microglia miR-423-3p neuroinflammation neuroprotection NLRP3 PYROPTOSIS RNA-Seq spinal cord injury
下载PDF
The roles of macrophage migration inhibitory factor in retinal diseases 被引量:1
20
作者 Hongbing Zhang Xianjiao Zhang +3 位作者 Hongsong Li Bing Wang Pei Chen Jiamin Meng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期309-315,共7页
Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF i... Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma. 展开更多
关键词 diabetic retinopathy GLAUCOMA macrophage migration inhibitory factor migration inhibitory factor receptor optic neuropathy retinal degeneration retinal neovascular uveal melanoma UVEITIS
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部